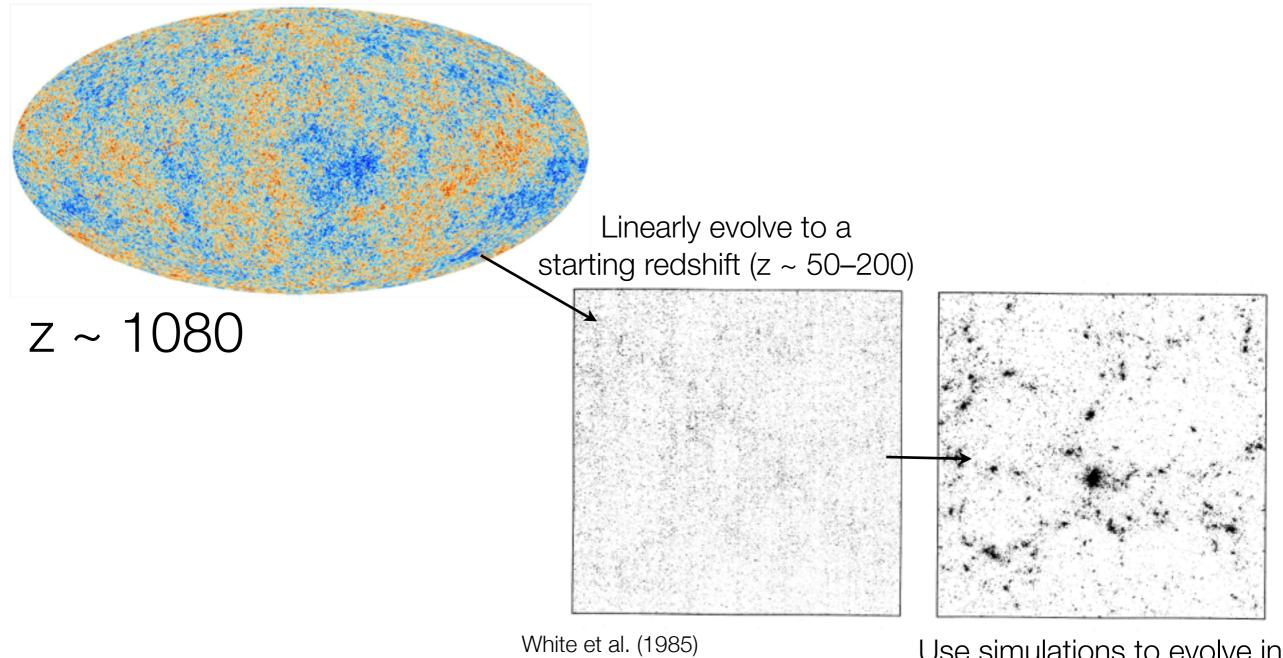

Cosmology Simulations with Enzo

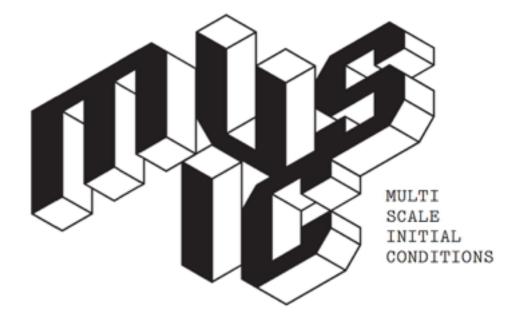
John Wise (Georgia Tech) Enzo Workshop 北海道大学 – 19 Nov 2014

Outline

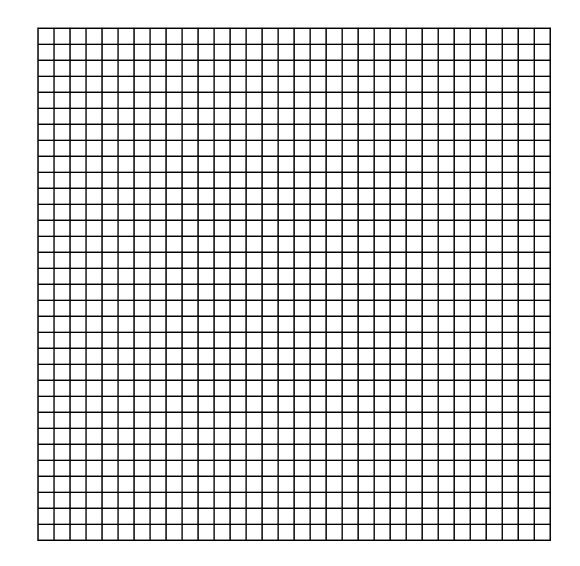

- Introduction to unigrid cosmology simulations
- Introduction to nested grid cosmology simulations
- Using different non-equilibrium chemistry models
- Including radiative cooling & star formation/feedback
- Including radiative transfer

A universe in a box

Planck Collaboration (2014)


A universe in a box

Use simulations to evolve in the non-linear regime


Unigrid Initial Conditions

- Two programs are provided with Enzo to generate cosmology initial conditions: inits (src/inits) or mpgrafic (src/mpgrafic)
- However, we will be using the program **MUSIC** (Hahn & Abel 2011) that is more robust and efficient.
 - <u>http://www.phys.ethz.ch/~hahn/MUSIC/index.html</u>
 - <u>https://bitbucket.org/ohahn/music</u>
- 10 initial condition files in HDF5 file format
 - Baryon Density: 1 x N x N x N
 - (x,y,z) Baryon Velocity: 1 x N x N x N
 - (x,y,z) Particle Velocity: 1 x N x N x N
 - (x,y,z) Particle Displacement: 1 x N x N x N

Unigrid Initial Conditions with MUSIC

- MUSIC: MUlti-Scale Initial Conditions
- Designed specifically for nested grid "zoom-in" simulations.
- Improves errors by two orders of magnitude compared to previous codes.
- Zel'dovich approximation and 2LPT
- Multi-code support (e.g. GADGET, ART, Tipsy, RAMSES, Enzo)
- Publicly available, OpenMP parallel

Unigrid Initial Conditions with MUSIC

- Requirements:
 - GNU Scientific Library (GSL)
 - FFTW 2 or 3
 - HDF5

Installing MUSIC

- Download the source code (on conival)
 - hg clone <u>https://bitbucket.org/ohahn/music</u>
 - cp ~guest01/music/Makefile music/
 - cd music
 - make
 - export LD_LIBRARY_PATH=\${LD_LIBRARY_PATH}:/home/ guest01/local/lib

Grab MUSIC and Enzo parameter files

- On conival,
 - •cd ~
 - •tar xf ~guest01/sapporo_cosmo.tar
- On your laptop
 - •wget http://www.physics.gatech.edu/~jw254/scpics/sapporo_cosmo.tgz
 - •tar xf sapporo_cosmo.tgz

Initial Conditions Parameters

- Cosmology Parameters: box size, Hubble constant, mass-energy fractions $(\Omega_{\Lambda}, \Omega_{m}, \Omega_{b})$, initial redshift
- Power spectrum parameters: power spectrum type, σ_8 , random seed

boxlength= 5zstart= 50units of comoving Mpc/h	Omega_L Omega_b H0 sigma_8 nspec	<pre>= 0.3175 = 0.6825 = 0.049 = 67.11 = 0.8344 = 0.9624 = eisenstein</pre>
	[random] seed[5]	= 201310160

Initial Conditions Parameters – Grid parameters

setup		
boxlength		5
zstart		50
levelmin		5
<pre>levelmin_TF</pre>	-	5
levelmax	-	5
baryons		yes
use_2LPT		yes
use_LLA		yes
periodic_TF	-	yes

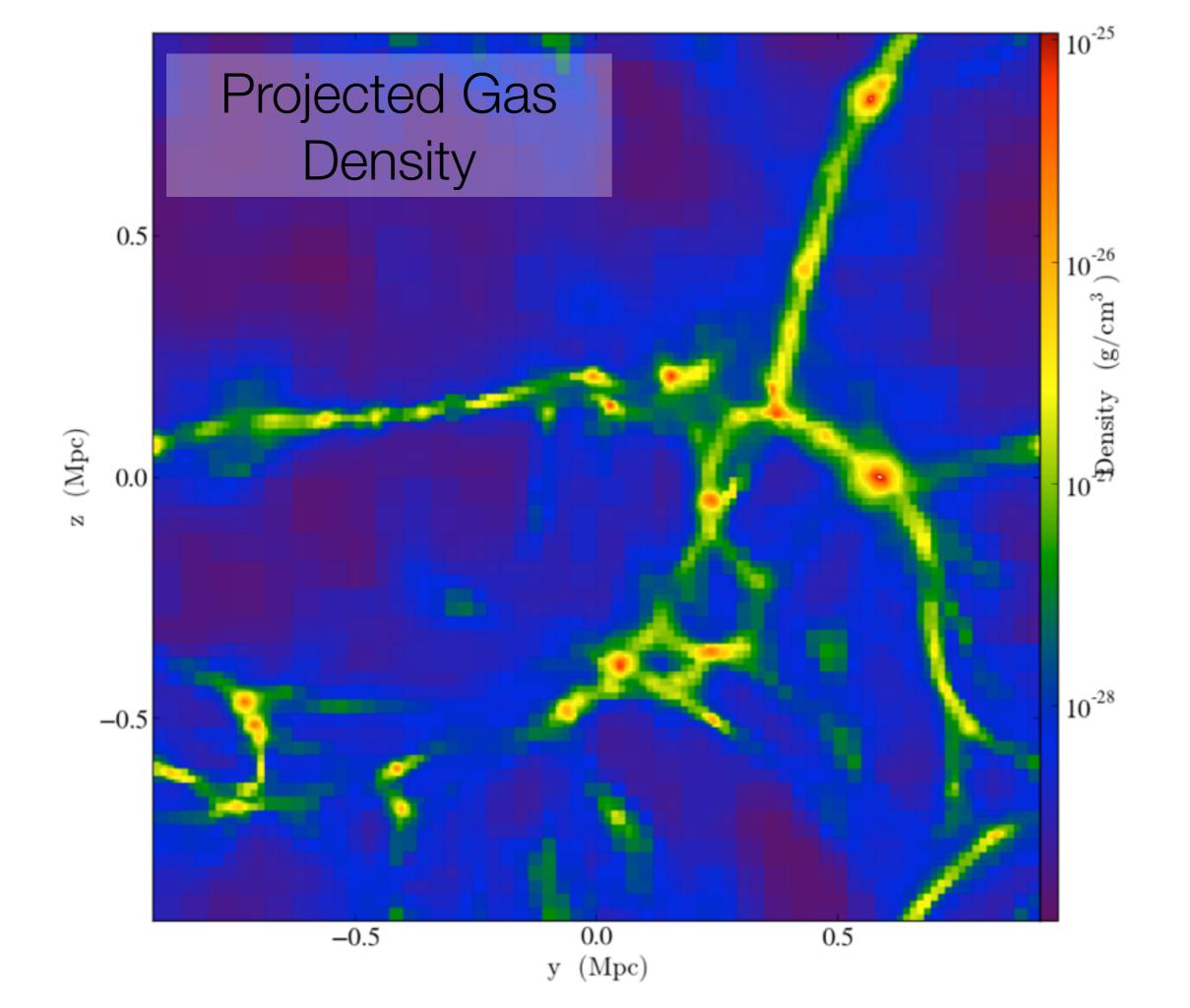
Initial redshift Base resolution = 2ⁿ cells across

Finest resolution of zoom-in region Generate baryon ICs 2LPT = yes; Zel'dovich = no

MUSIC% ~/codes/music/MUSIC sapporo_cosmo.conf	
this is music! version - Opening log file 'sapporo_cosmo.conf_log.txt' - Selecting transfer function plug-in 'eisenster - starting at a=0.0196078	 Density calculation took 0.170149s with 4 threads. Top grid mean density is off by -4.1901e-17, correcting Global density extrema: minimum: delta=-0.583318 at (0.765625,0.953125,0.515625) shifted back at (0.765625,0.953125,0.515625) maximum: delta=0.664508 at (0.359375,0.796875,0.921875)
 Selecting region generator plug-in 'box' WARNING: The selected transfer function does a distinct amplitudes for baryon and DA Perturbation amplitudes will be identified. 	 shifted back at (0.359375,0.796875,0.921875) Invoking unigrid FFT Poisson solver
<pre>- Grid structure: Level 5 : offset = (0, 0, 0)</pre>	- Invoking unigrid FFT Poisson solver COMPUTING BARYON DENSITY
<pre>size = (32, 32, 32, 32) - Finest level :</pre>	 Using real-space transfer function kernel. Computing transfer function kernel Deconvolving density kernel Performing noise convolution on level 5 Fetching kernel for level 5 Performing density convolution (32, 32, 32) Density calculation took 0.1516s with 4 threads. Top grid mean density is off by -4.19006e-17, correcting
- Selecting output plug-in 'enzo'	- Invoking unigrid FFT Poisson solver
GENERATING WHITE NOISE	 Invoking unigrid FFT Poisson solver Top grid mean density is off by 0.0175262, correcting
	 Wrote output file 'sapporo_cosmo' using plugin 'enzo' Done!

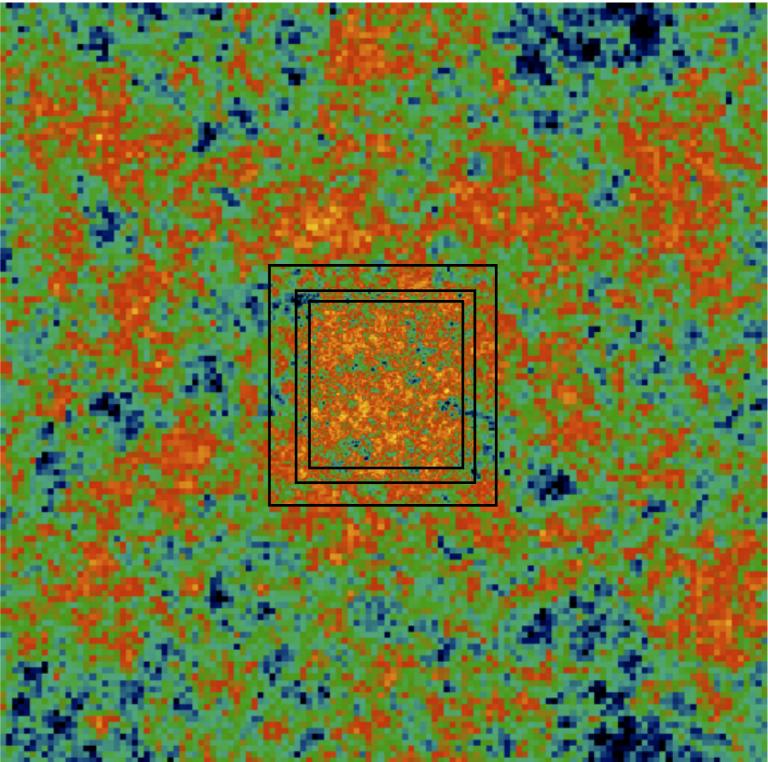
Set up Enzo parameter file

- MUSIC creates a basic but non-functional parameter file, parameters.txt.
- The user must add the relevant AMR, hydro, chemistry, etc. parameters.
- See run/Cosmology/Hydro/AMRCosmology/AMRCosmology.enzo for an example.
- For this workshop, we have provided a set of example parameter files for each lab exercise.


Run the simulation

- Move parameter file and initial conditions into the same directory (see Adiabatic directory)
- Run enzo!

sapporo_cosmo% ./enzo.exe adiab.enzo


- Add the "-d" option for debugging information
- Add the "-r" option for restarting from a snapshot.

Nested Grid Cosmology Simulations

- aka Zoom-in calculations
- 1. N-Body Simulation
- 2. Locate region of interest, e.g. most massive halo
- 3. Generate nested grid initial conditions
- 4. Run simulation!

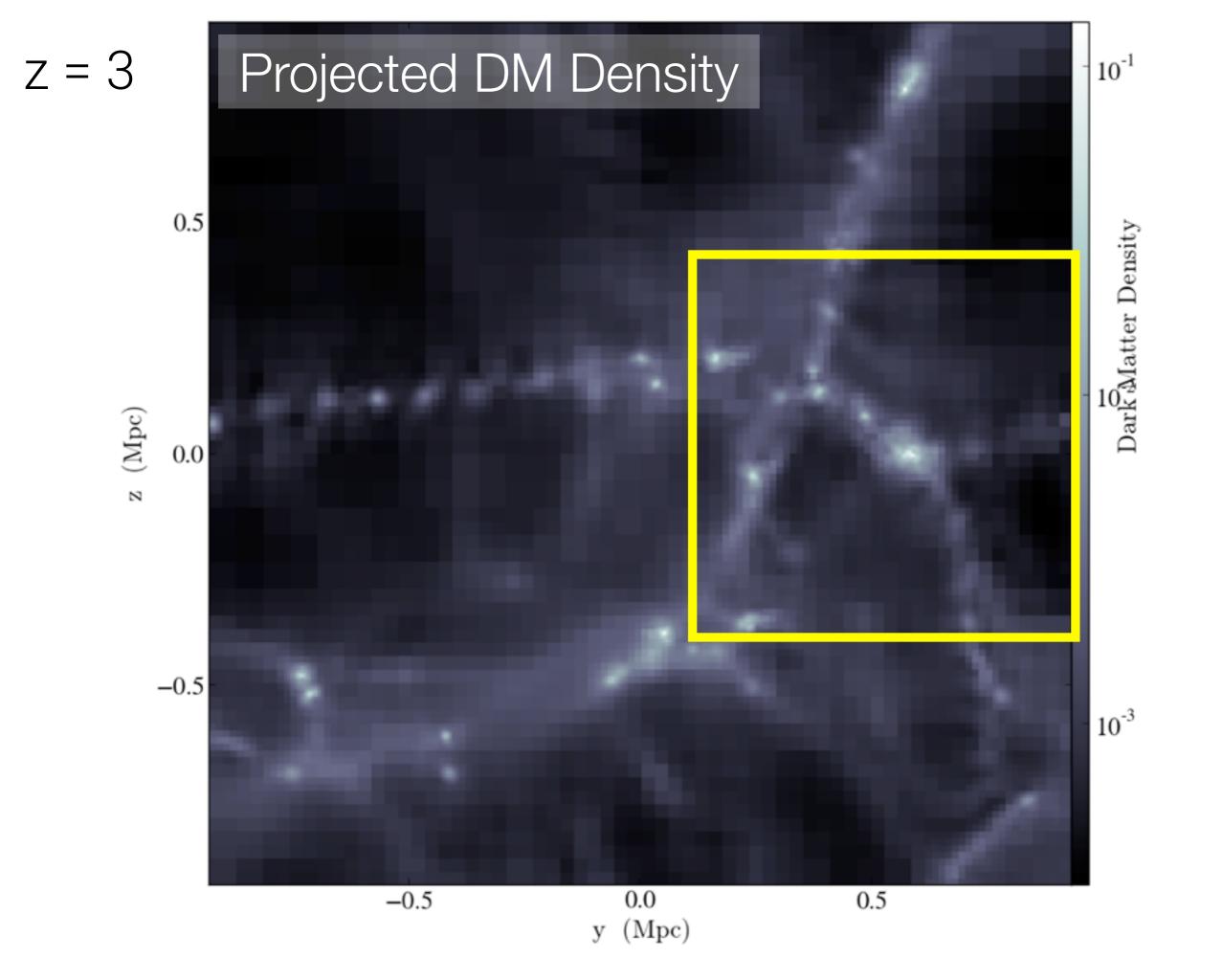
N-body Simulation

- Usually run at the same resolution as the production level-0 resolution
- Create initial conditions with MUSIC and use_baryons=no
- Key parameters

CosmologySimulationOmegaBaryonNow	= 0.0
CosmologySimulationOmegaCDMNow	= 0.3175
CosmologySimulationParticleVelocity1N	lame = ParticleVelocities_x
CosmologySimulationParticleVelocity2N	lame = ParticleVelocities_y
CosmologySimulationParticleVelocity3N	lame = ParticleVelocities_z
CosmologySimulationParticleDisplaceme	ent1Name = ParticleDisplacements_x
CosmologySimulationParticleDisplaceme	ent2Name = ParticleDisplacements_y
CosmologySimulationParticleDisplaceme	ent3Name = ParticleDisplacements_z
CosmologySimulationNumberOfInitialGri	ds = 1
CosmologySimulationCalculatePositions	= 1

RefineBy	= 2	<pre>// refinement factor</pre>
#CellFlaggingMethod	= 2 4	// use baryon and DM mass
CellFlaggingMethod	= 4	// use DM mass for refinement
MinimumEfficiency	= 0.4	<pre>// fraction efficiency</pre>
MinimumOverDensityForRef	inement	= 4. // times the initial dens

Halo finding


- On the last output, we need to find the cosmological halos.
- Enzo has a built-in halo finder. Run it with

sapporo_cosmo% ./enzo.exe -F -d -r DD0020/DD0020

• Will put the halo list sorted by mass in the FOF/ directory.

```
000
                                 Terminal — 80×30 — #3
# Time
           = 15.921139
# Redshift = 12.802003
# Number of halos = 83
#
# Column 1. Center of mass (x)
# Column 2. Center of mass (y)
# Column 3. Center of mass (z)
# Column 4. Halo number
# Column 5. Number of particles
# Column 6. Halo mass [solar masses]
# Column 7. Virial mass [solar masses]
# Column 8. Stellar mass [solar masses]
# Column 9. Virial radius (r200) [kpc]
# Column 10. Mean x-velocity [km/s]
# Column 11. Mean y-velocity [km/s]
# Column 12. Mean z-velocity [km/s]
# Column 13. Velocity dispersion [km/s]
# Column 14. Mean x-angular momentum [Mpc * km/s]
# Column 15. Mean y-angular momentum [Mpc * km/s]
# Column 16. Mean z-angular momentum [Mpc * km/s]
# Column 17. Spin parameter
#
# datavar lines are for partiview. Ignore them if you're not partiview.
#
datavar 0 halo_number
datavar 1 number_of_particles
datavar 2 halo_mass
datavar 3 virial_mass
datavar 4 stellar_mass
groups_00137.dat lines 1-29/122 4%
```

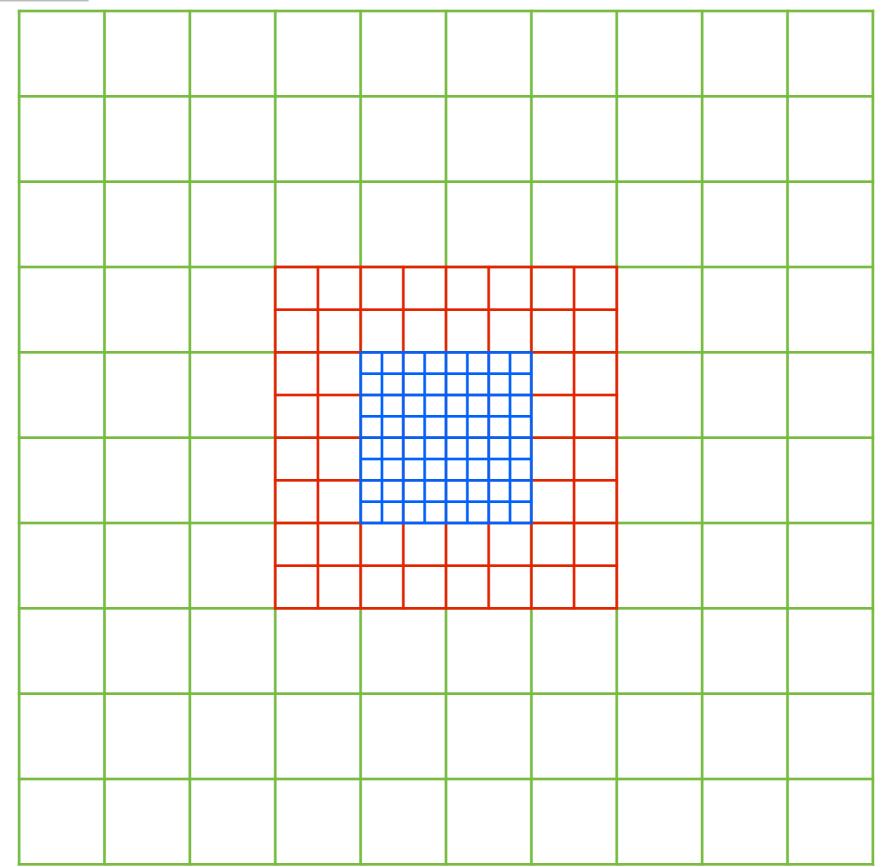
\odot \bigcirc \bigcirc		Terminal	— 80×30 — #3			
datavar 0 halo	o_number					<u>=</u>
datavar 1 numb	per_of_partic	les				
datavar 2 halo	o_mass					
datavar 3 viri	ial_mass					
datavar 4 stel	llar_mass					
datavar 5 viri	ial_radius					
datavar 6 x_ve	elocity					
datavar 7 y_ve	elocity					
datavar 8 z_ve	elocity					
datavar 9 velo	ocity_dispers	ion				
datavar 10 x_a	angular_momen	tum				
datavar 11 y_a	angular_momen	tum				
datavar 12 z_a		tum				
datavar 13 spi	in Positio	n			Mass	
0.76364088	0.29754913	0.37248853	0	2060	571700.88	
447925.16	0	0.11323795	0.84548277	-0.41380891	1.0349354	
5.341588 2.408	8008e-05 3.40	65459e-05 -6	.1198812e-06	0.11691254		
0.46177065	0.61586523	0.6905852	1	1390	385758.56	
372992.47	0	0.10630372	2.0898418	0.23426482	-1.659736	4 h
.6082692 5.596	66311e-06 1.2	64129e-05 -3	.7420041e-06	0.041144241		
0.84373128	0.67770523	0.27474043	2	415	115172.2	
70213.453	00	.060892154	-0.90891731	-0.64614326	2.0012767	2
.8843138 2.717						
0.51242203	0.62618536	0.67746228	3	372	103238.98	
				0.49669054	-2.3942778	2
.9666159 7.260						
			4		91583	
			-1.6947181	-0.76077771	3.8264091	2
groups_00137.c	lat lines 25-	44/122 11%				Y

Nested Grid Initial Conditions with MUSIC

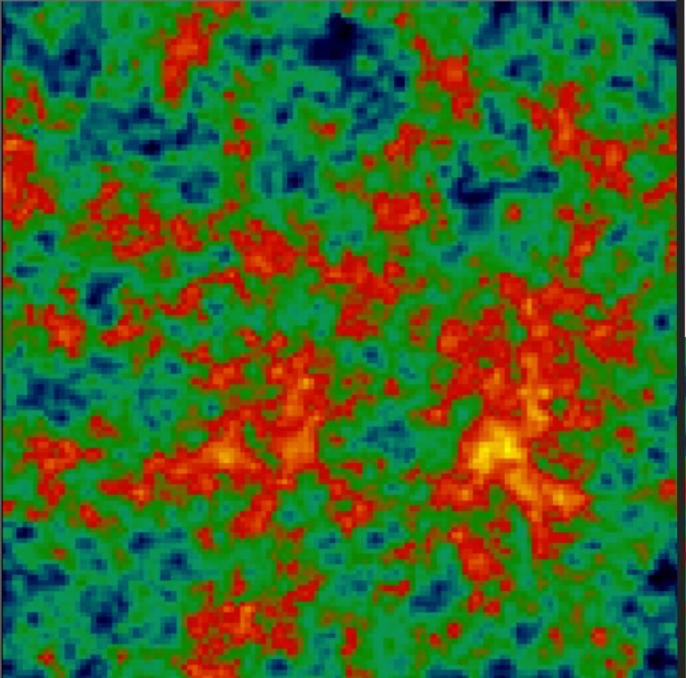
- Find halo of interest.
- We want to re-sample the Lagrangian volume of this region with a higher resolution.
- We can use yt to find this volume. Sample script can be found at
- <u>https://bitbucket.org/MatthewTurk/yt.lagrangian_volume</u>
 - All particles have unique IDs, so we can find the particles in some region in the final output.
 - Then we find the bounding box of the same particles in the initial output.

MUSIC: Nested Grid Parameters

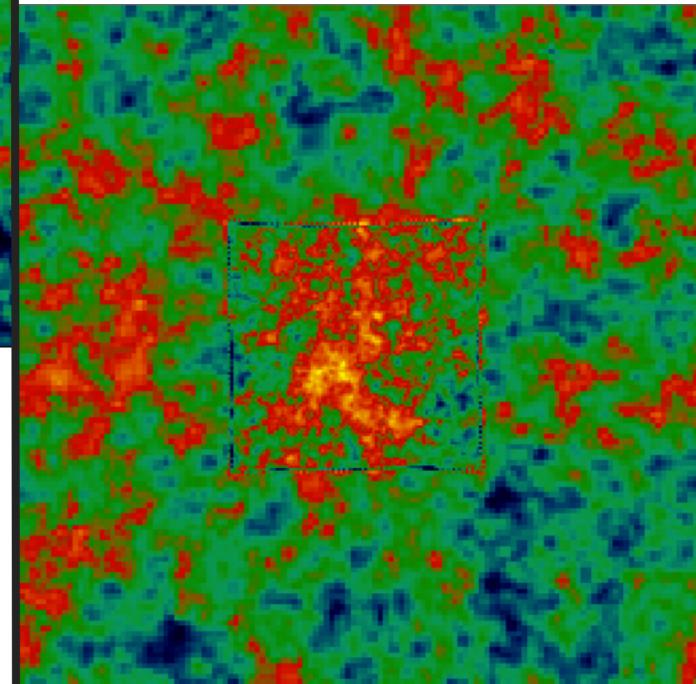
setup	
boxlength	= 5
zstart	= 50
levelmin	= 5
<pre>levelmin_TF</pre>	= 5
levelmax	= 7
padding	= 2
overlap	= 0
ref_center	= 0.3, 0.81, 0.5
ref_extent	= 0.25, 0.25, 0.25
align_top	= yes
baryons	= no
use_2LPT	= yes
use_LLA	= yes
periodic_TF	= yes


Resolution of the finest nested grid. Effective resolution = $2^7 = 128$

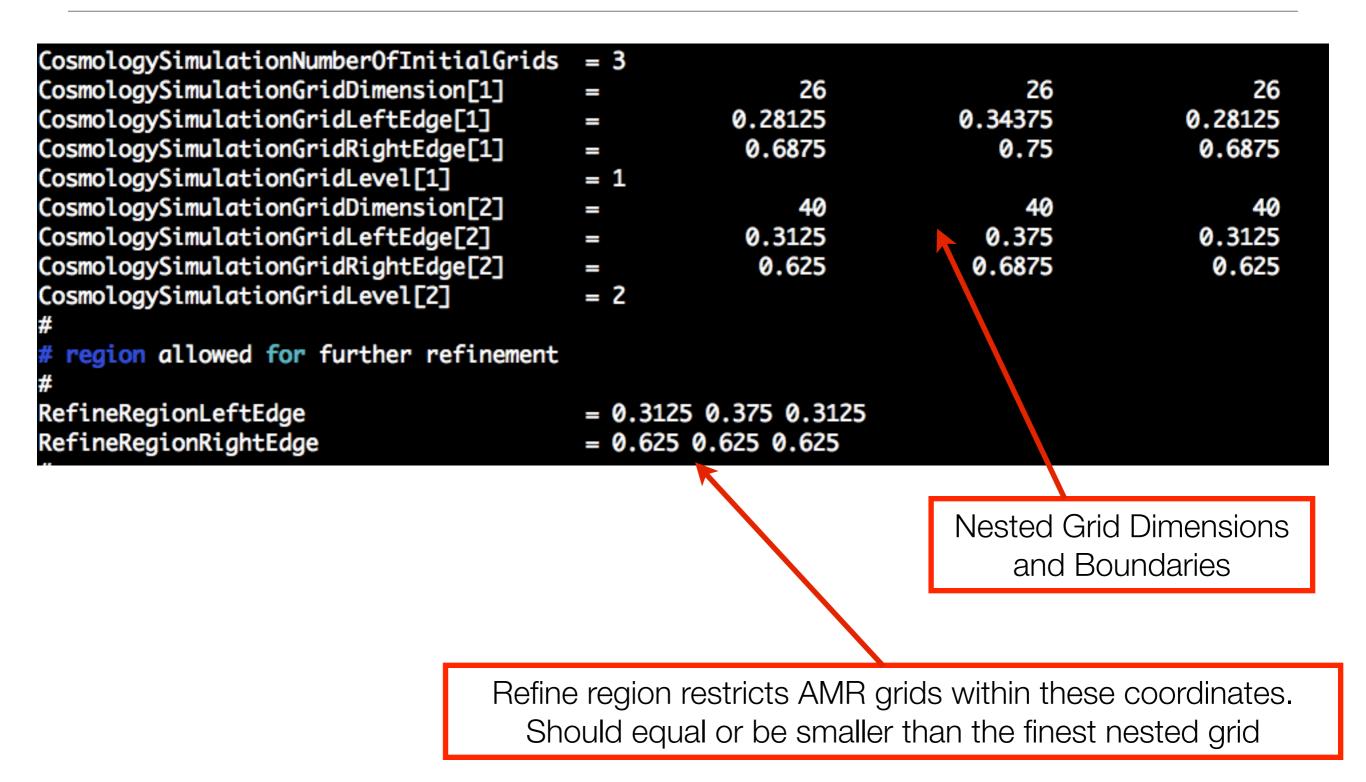
Center of the Lagrangian volume Width of the Lagrangian volume


random	
seed[5]	= 201310160
seed[6]	= 301310160
seed[7]	= 401310160

Optional: New random seeds for nested grids.


padding = 2

sapporo_cosmo% ~/codes/music/MUSIC sapporo_cosmo_nested.conf $\langle \cdot \rangle$ with MUSIC $\sim \sim$ _\\L__\ \vee \vee \vee \vee \vee \sim \sim \vee_{-} - Top grid mean density is off by -6.5921e-05, correcting... - Global density extrema: this is mus minimum: delta=-0.730190 at (0.449219,0.378906,0.425781) (level=7) shifted back at (0.261719,0.660156,0.425781) maximum: delta=0.986598 at (0.582031,0.621094,0.488281) (level=7) Opening log file 'sapporo_cosmo_nest shifted back at (0.394531,0.902344,0.488281) - Selecting transfer function plug-in - Density extrema on finest level: starting at a=0.0196078 minimum: delta=-0.730190 at (0.449219,0.378906,0.425781) - Selecting region generator plug-in ' shifted back at (0.261719,0.660156,0.425781) - refinement region is 'box', w/ bound maximum: delta=0.986598 at (0.582031,0.621094,0.488281) left = [0.175000, 0.685000, 0.373]shifted back at (0.394531,0.902344,0.488281) right = [0.425000, 0.935000, 0.626]- Invoking multi-grid Poisson solver... - Domain will be shifted by (6, -9, 0) - Converged in 5 steps to 3.89154e-06 - Poisson solver took 0.742935s with 4 threads. - Grid structure: - Computing 2LPT term.... Level 5 : offset = (0, - Solving 2LPT Poisson equation size = (32, Level offset = (6: 9, - Invoking multi-grid Poisson solver... size = (26, - Converged in 5 steps to 2.05267e-06 Level 7: offset = (2, - Poisson solver took 0.775615s with 4 threads. size = (40. - Performing hybrid Poisson step... (80, 80, 80) - velocity component 0 : sigma = 3.0004 - Finest level : - velocity component 1 : sigma = 1.79269 $extent = 1562.5 \times 10^{-10}$ - velocity component 2 : sigma = 1.84676mtotgrid = 3.36123e+1particle mass = 5.25192e+0 COMPUTING DARK MATTER DISPLACEMENTS dx = 39.0625 h- Performing hybrid Poisson step... (80, 80, 80) - Selecting output plug-in 'enzo'... - Wrote output file 'IC.2' using plugin 'enzo'... Done!



1 Nested Grid

Unigrid Smoothed DM Density Slice

Setting up the Nested Grid Parameter File

Overdensity criteria

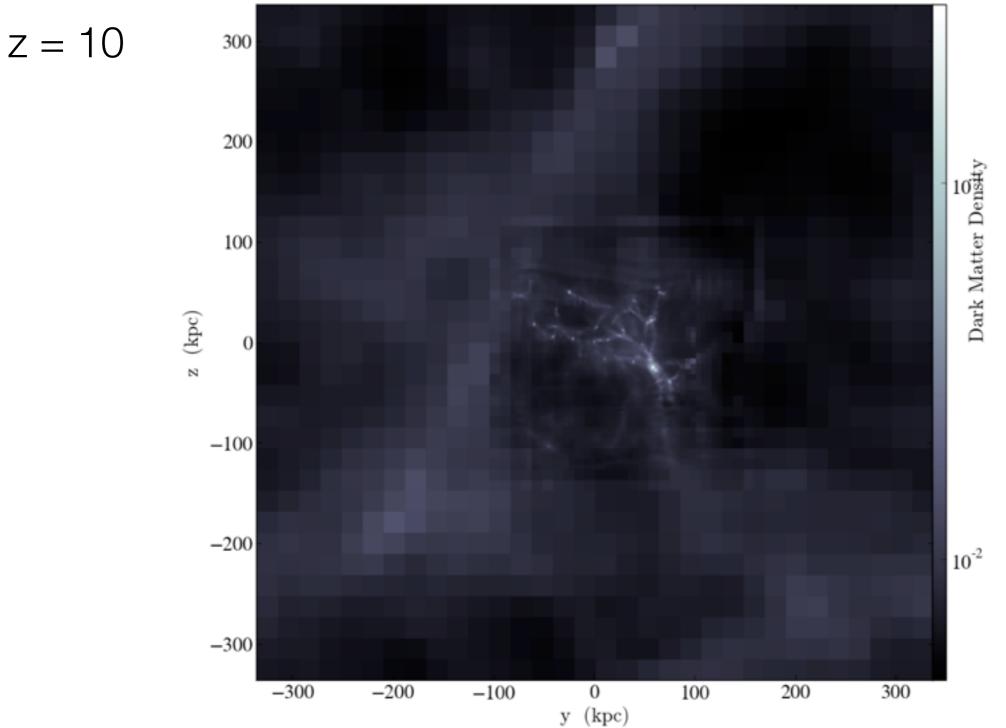
- Very important: Must divide the baryon and DM mass refinement criteria by a factor of 8ⁿ, where n := maximum initial level
- e.g. Refine on an overdensity of 3 with 2 initial grids \rightarrow 3.0/64 = 0.046875
- If not done, the hierarchy will remain under-resolved, compared with the desired results.

#	
<pre># set grid refinement pa #</pre>	rameters
StaticHierarchy	= 0 // dynamic hierarchy
MaximumRefinementLevel	병사 사람이 다 같아요. 이렇는 다 집에 다 아이들이 다 아이들이 집에 다 아이들이 집에 있는 것이 같아요. 이렇는 것이 아이들이 다 가지 않는 것이 하는 것이 같아요. 나는 것이 다 아이들이 아이들이 아이들이 나는 것이 않는 것이 다. 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이 아이들이 아이들
MaximumGravityRefinementL	evel = 8
MaximumParticleRefinement	Level = 8
RefineBy	= 2 // refinement factor
CellFlaggingMethod	= 2 4 6 // use baryon mass for refinement
#CellFlaggingMethod	= 4 // use DM mass for refinement
MinimumEfficiency	= 0.3 // fraction efficiency
MinimumOverDensityForRefi	nement = 0.5 0.5 // times the initial density refers to top g≥
rid: divide by 8 for each	additional level
MinimumMassForRefinementL	evelExponent = -0.2 0.0

Run enzo! (see directory: DarkMatter-Nested)

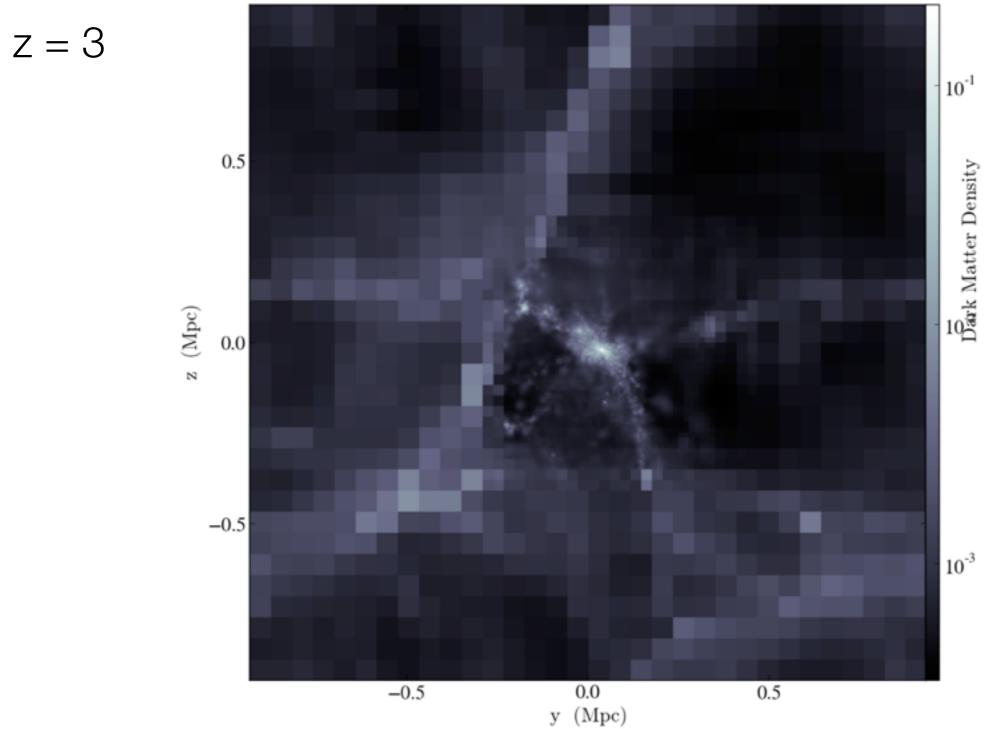
• Running on a single core, outputting standard output to display.

sapporo_cosmo% ./enzo.exe -d nbody_nested.enzo

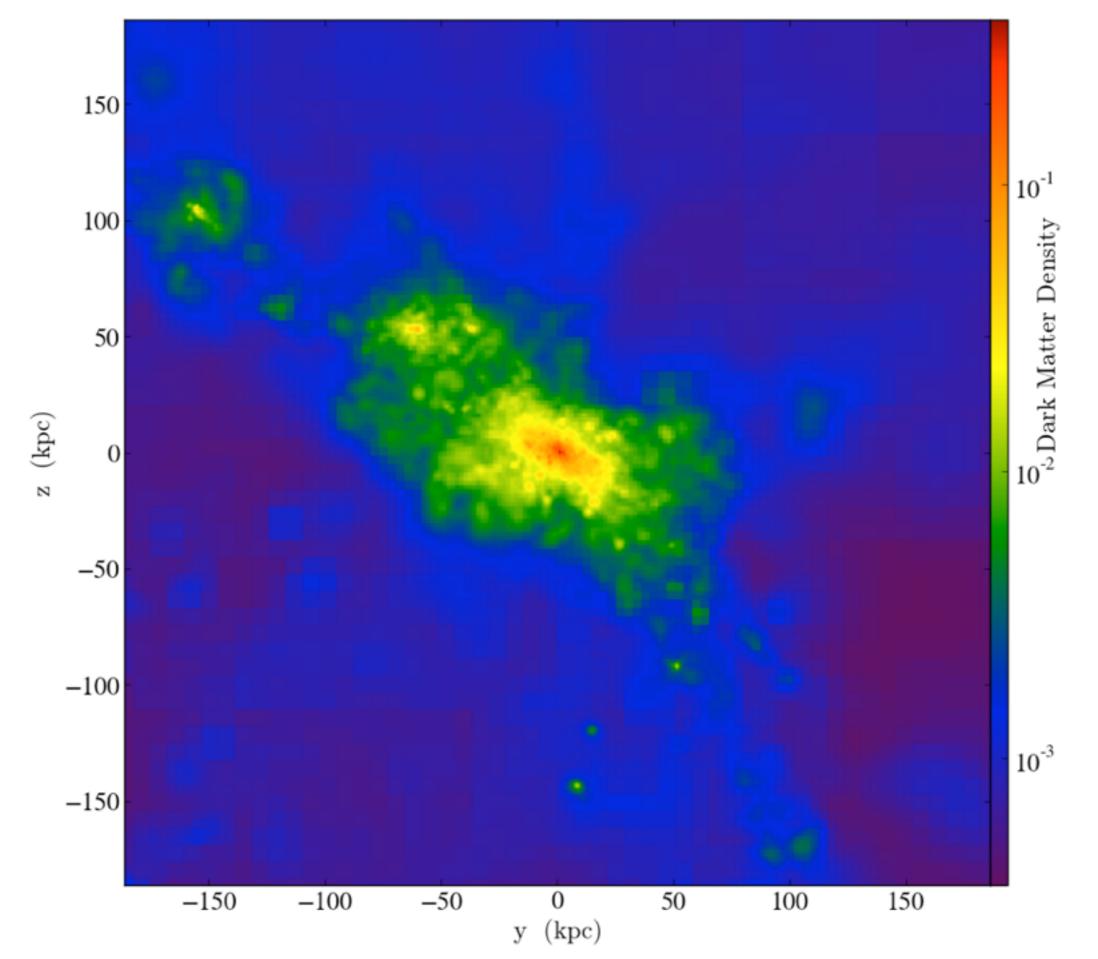

• Running on 4 cores, piping standard output to the file, estd.out.

sapporo_cosmo% mpirun -n 4 ./enzo.exe -d nbody_nested.enzo >& estd.out

• This simulation takes significantly longer than the simulation with no nested grids. On my laptop, it took 20 minutes on 2 cores.


Differences between simulations

• Same spatial resolution but higher mass resolution!



Differences between simulations

• Same spatial resolution but higher mass resolution!

z = 3

Different chemistry and cooling models

- **MultiSpecies == 0:** Equation of state with an adiabatic index Υ
 - RadiativeCooling == 1: Cooling from a tabulated cooling curve (copy input/cool_rates.in to working directory)

Non-equilibrium chemistry

- MultiSpecies == 1: 6-species (H, H⁺, He, He⁺, He⁺⁺, e⁻)
- MultiSpecies == 2: 9-species (H, H⁺, He, He⁺, He⁺⁺, e⁻, H⁻, H₂, H₂⁺); i.e. +molecular hydrogen cooling
- MultiSpecies == 3: 12-species (H, H⁺, He, He⁺, He⁺⁺, e⁻, H⁻, H₂, H₂⁺, D, D⁺, HD); +HD cooling

Different chemistry and cooling models

- MetalCooling == 1: Tabulated cooling table from Glover & Jappsen (2007) & Sutherland & Dopita (1993) – input/metal_cool.dat.
 - T < 10^4 K: fine-structure metal-line cooling
 - T > 10^4 K: collisional ionization equilibrium
- **MetalCooling == 2:** Explicitly calculated metal cooling rates (Cen)
- MetalCooling == 3: Tabulated cooling table from CLOUDY (Smith et al. 2008)

3 more parameters for large nested grid runs

- i.e. >256³ nested grids
- ParallelRootGridI0 = 1: Root grids are tiled before I/O, and each processor reads/writes their own tile
- PartitionNestedGrids = 1: Same thing as above but for nested grids
- UnigridTranspose = 2: More parallel-efficient transpose for the FFT done for the gravity solver.

Summary

You should now know how to:

- Create cosmological unigrid and nested grid initial conditions with MUSIC. For more, see
 - <u>http://www.phys.ethz.ch/~hahn/MUSIC/index.html</u>
 - <u>https://bitbucket.org/ohahn/music</u>
 - <u>https://bitbucket.org/ohahn/music/downloads/MUSIC_Users_Guide.pdf</u>
- Run cosmological regular and nested grid runs (*N*-Body and *N*-Body + gas)
 - <u>http://enzo.readthedocs.org/en/latest/tutorials/RunCosmologySimulation.html</u>
 - However, these instructions are for the *inits* initial conditions generator that is included with Enzo.