Essential Physics II

List of equations covered in this course.
Equations in boxes \square will be provided in the exam. Please check you know where/ when/how to use these equations.

Students are expected to know equations not in boxes.

Part I: Electromagnetism

$$
\begin{array}{rlr}
\bar{F}_{12} & =\frac{k q_{1} q_{2}}{r^{2}} \hat{r}_{12} & \text { Coulomb's law } \\
\bar{E} & =\frac{k q}{r^{2}} \hat{r} & k=9.0 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \\
\bar{E} & =\sum_{i} d \bar{E}=\int \frac{k d q}{r^{2}} \hat{r} & \\
\hline p=q d & \text { Dipole moment } & \\
\hline \bar{\tau}=\bar{p} \times \bar{E} & \text { Torque on dipole } & \\
\hline U & =-p E \cos \theta=-\bar{p} \cdot \bar{E} & \text { Potential energy }
\end{array}
$$

$\Phi=|\bar{E}||\bar{A}| \cos \theta=\bar{E} \cdot \bar{A}$
Electric flux

$$
\oint \bar{E} \cdot d \bar{A}=\frac{q_{\mathrm{enclosed}}}{\epsilon_{0}}
$$

Gauss's Law (know solutions for sphere, $\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}$ spherical shell, line, plane $\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}$ and conductors)

$$
\Delta V_{A B}=\frac{\Delta U_{A B}}{q}
$$

Electric potential difference

$$
\Delta V_{A B}=-\int_{A}^{B} \bar{E} \cdot d \bar{r}=-\bar{E} \cdot \Delta \bar{r}
$$

$$
V(r)=\frac{k q}{r}
$$

Point charge potential

$$
\bar{F}_{B}=q \bar{v} \times \bar{B} \quad \text { Magnetic force } \quad \text { Unit: [T] Tesla }
$$

$$
\bar{F}_{B}=q \bar{E}+q \bar{v} \times \bar{B} \quad \text { Electromagnetic force }
$$

$$
\bar{F}=I \bar{l} \times \bar{B} \quad \text { Magnetic force on a current }
$$

$$
d \bar{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \bar{l} \times \bar{r}}{r^{2}}
$$

$$
\begin{array}{ll}
\begin{array}{l}
\text { Biot-Savart Law } \\
\text { (know solutions for current }
\end{array} & \mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}
\end{array}
$$

loop, straight wire)
$\bar{B}=\int d \bar{B}=\frac{\mu_{0}}{4 \pi} \int \frac{I d \bar{l} \times \hat{r}}{r^{2}}$

$$
\bar{\mu}=N I \bar{A}
$$

$\bar{\tau}=\bar{\mu} \times \bar{B}$
$\oint \bar{B} \cdot d \bar{A}=0$
$\oint \bar{B} \cdot d \bar{r}=\mu_{0} I_{\text {enclosed }}$
$\mathcal{E}=I R$
$\Phi_{B}=\int \bar{V} \cdot d \bar{A}=\bar{B} \cdot \bar{A}$ Magnetic flux

$\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}$
$\mathcal{E}=-\frac{d \Phi_{B}}{d t}$

$$
\oint \bar{B} \cdot d \bar{r}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}
$$

Ohm's law

Faraday's Law
(know solutions for a solenoid) modification

$$
S=S_{0} \cos ^{2} \theta
$$

Magnetic dipole moment

Torque on a current loop

Gauss's law for magnetism

Ampere's law for steady current (know solutions for inside and outside a wire, current sheet and solenoid)
\mathcal{E} electromotive force, EMF

Ampere's law with Maxwell

Law of Malus (Polarisation)

Part II: Thermodynamics

$T_{C}=T-273.15 \quad$ Celsius to kelvin scale
$T_{F}=\frac{9}{5} T_{C}+32 \quad$ Fahrenheit to celsius scale
$\Delta Q=m c \Delta T \quad$ Heat capacity \quad c specific heat capacity
$H=\frac{d Q}{d t}=-k A \frac{d T}{d x} \quad$ Conductive heat flow
$H=\frac{T_{1}-T_{3}}{R_{1}+R_{2}} \quad$ Composite slab
$R=\frac{\Delta x}{k A}$
Thermal resistance
$P=\epsilon \sigma A T^{4}$
Stefan-Boltzmann Law

$$
\sigma=5.67 \times 10^{-8} \mathrm{Js}^{-1} \mathrm{~m}^{-2} \mathrm{~K}^{-4}
$$

$p V=n R T$
Ideal gas law

$$
\begin{aligned}
& R=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& N_{A}=6.023 \times 10^{23} \text { atoms }
\end{aligned}
$$

$\frac{3}{2} k T=\frac{1}{2} m \bar{v}^{2}$
$v_{\mathrm{th}}=\sqrt{\frac{3 k T}{m}}$
Thermal speed
(typical molecular speed)

$$
Q=L m
$$

Energy required for a phase
L heat of transformation change
$\Delta U=Q+W$
1st Law of Thermodynamics
$\frac{d U}{d t}=\frac{d Q}{d t}+\frac{d W}{d t}$
$Q=-W=n R T \ln \left(\frac{V_{2}}{V_{1}}\right)$
$\Delta U=n C_{v} \Delta T$

Isothermal process ($\mathrm{T}=$ constant)

Any process

$$
W=-p \Delta V \quad \text { Isobaric gas }(\mathrm{p}=\text { constant })
$$

$$
Q=n C_{P} \Delta T=n C_{V} \Delta T+p \Delta V
$$

$C_{P}=C_{V}+R \quad$ molar specific heat
$\Delta U=W \quad$ Adiabatic process $(\mathrm{Q}=0)$
$p V^{\gamma}=$ constant
$T V^{\gamma-1}=\mathrm{constant}$
$W=\frac{p_{2} V_{2}-p_{1} V_{1}}{\gamma-1}$
$\frac{1}{2} k T$

Average energy / molecule for each degree of freedom

Part III: Modern Physics

$\lambda_{\text {peak }} T=2.898 \mathrm{~mm} \cdot \mathrm{~K}$	Wien's law	
$P_{\text {blackbody }}=\sigma A T^{4}$	Stefan-Boltzmann law	$\sigma=5.67 \times 10^{-8} \mathrm{Js}^{-1} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
$R(\lambda, T)=\frac{2 \pi c k T}{\lambda^{4}}$	Rayleigh-Jean law	
$R(\lambda, T)=\frac{2 \pi h c^{2}}{\lambda^{5}\left(e^{h c / \lambda k T}-1\right)}$		

$E=h f$
$K_{\text {max }}=h f-\phi \quad$ Photoelectric effect
$\frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\right) \quad$ Hydrogen spectrum $\quad R_{H}=1.097 \times 10^{7} \mathrm{~m}^{-1}$
$r=n^{2} a_{0}$
$E=-\frac{k e^{2}}{2 a_{0}}\left(\frac{1}{n^{2}}\right)$
Allowed radii in Bohr atom
$a_{0}=0.0529 \mathrm{~nm}$
$\lambda=\frac{h}{p}$
de Broglie wavelength
$\Delta x \Delta p \geq \hbar$
Uncertainty principal
$-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+U(x) \psi(x)=E \psi(x)$ Schrodinger equation $h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$P(x)=\psi^{2}(x) d x \quad \begin{aligned} & \text { Probability of detecting a } \\ & \text { particle }\end{aligned}$
$E=\frac{n^{2} h^{2}}{8 m L^{2}}$
$E=\left(n+\frac{1}{2}\right) \hbar \omega$
Energy levels in a harmonic oscillator

