Essential Physics II

List of equations covered in this course.

Equations in boxes will be provided in the exam. Please check you know where/ when/how to use these equations.

Students are expected to know equations not in boxes.

Part I: Electromagnetism

$$\begin{split} \bar{F}_{12} &= \frac{kq_1q_2}{r^2} \hat{r}_{12} & \text{Coulomb's law} \\ \bar{E} &= \frac{kq}{r^2} \hat{r} \\ \bar{E} &= \sum_i d\bar{E} = \int \frac{kdq}{r^2} \hat{r} \\ \bar{E} &= \sum_i d\bar{E} = \int \frac{kdq}{r^2} \hat{r} \\ \hline p &= qd & \text{Dipole moment} \\ \hline \bar{\tau} &= \bar{p} \times \bar{E} & \text{Torque on dipole} \\ \hline U &= -pE \cos \theta = -\bar{p} \cdot \bar{E} & \text{Potential energy} \\ \Phi &= |\bar{E}||\bar{A}| \cos \theta = \bar{E} \cdot \bar{A} & \text{Electric flux} \\ \hline \oint \bar{E} \cdot d\bar{A} &= \frac{q_{\text{enclosed}}}{\epsilon_0} & \text{Gauss's Law} \\ \text{(know solutions for sphere, spherical shell, line, plane} & \epsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2/\text{Nm} \\ \hline \end{array}$$

 $\Delta V_{AB} = \frac{\Delta U_{AB}}{q}$

Electric potential difference

$$\Delta V_{AB} = -\int_{A}^{B} \bar{E} \cdot d\bar{r} = -\bar{E} \cdot \Delta \bar{r}$$

$$V(r) = \frac{kq}{r}$$

Point charge potential

$\bar{F}_B = q\bar{v} \times \bar{B}$	Magnetic force	Unit: [T] Tesla
$\bar{F}_B = q\bar{E} + q\bar{v} \times \bar{B}$	Electromagnetic force	
$\bar{F} = I\bar{l} \times \bar{B}$	Magnetic force on a current	
$d\bar{B} = \frac{\mu_0}{4\pi} \frac{I d\bar{l} \times \bar{r}}{r^2}$	Biot-Savart Law (know solutions for current loop, straight wire)	$\mu_0 = 4\pi \times 10^{-7} \mathrm{N/A^2}$
$\bar{B} = \int d\bar{B} = \frac{\mu_0}{4\pi} \int \frac{I d\bar{l}}{r^2}$	$\frac{\times \hat{r}}{2}$	
$\bar{\mu} = N I \bar{A}$	Magnetic dipole moment	
$\bar{\tau} = \bar{\mu} \times \bar{B}$	Torque on a current loop	
$\oint \bar{B} \cdot d\bar{A} = 0$	Gauss's law for magnetism	
$\oint \bar{B} \cdot d\bar{r} = \mu_0 I_{\text{enclosed}}$	Ampere's law for steady curr inside and outside a wire, cu	ent (know solutions for rrent sheet and solenoid)
$\overline{\mathcal{E} = IR}$	Ohm's law E	electromotive force, EMF
$\Phi_B = \int \bar{V} \cdot d\bar{A} = \bar{B} \cdot \bar{A}$	Magnetic flux	
$\oint \bar{E} \cdot d\bar{r} = -\frac{d\Phi_B}{dt}$	Faraday's Law (know solutions for a solenoid)	
$\mathcal{E} = -\frac{d\Phi_B}{dt}$		
$\oint \bar{B} \cdot d\bar{r} = \mu_0 I + \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}$	Ampere's law with Maxwell modification	
$S = S_0 \cos^2 \theta$	Law of Malus (Polarisation)	

Part II: Thermodynamics

$T_C = T - 273.15$	Celsius to kelvin scale	
$T_F = \frac{9}{5}T_C + 32$	Fahrenheit to celsius scale	
$\Delta Q = mc\Delta T$	Heat capacity	c specific heat capacity
$H = \frac{dQ}{dt} = -kA\frac{dT}{dx}$	Conductive heat flow	
$H = \frac{T_1 - T_3}{R_1 + R_2}$	Composite slab	
$R = \frac{\Delta x}{kA}$	Thermal resistance	
$P = \epsilon \sigma A T^4$	Stefan-Boltzmann Law	$\sigma = 5.67 \times 10^{-8} \mathrm{Js}^{-1} \mathrm{m}^{-2} \mathrm{K}^{-4}$
pV = nRT	ldeal gas law	$R = 8.314 \text{ J/K} \cdot \text{mol}$ $N_A = 6.023 \times 10^{23} \text{ atoms}$
$\frac{3}{2}kT = \frac{1}{2}m\bar{v}^2$	Kinetic theory of gases	
$v_{\rm th} = \sqrt{\frac{3kT}{m}}$	Thermal speed (typical molecular speed)	
Q = Lm	Energy required for a phase change	L heat of transformation
$\Delta U = Q + W$	1st Law of Thermodynamics	
$\frac{dU}{dt} = \frac{dQ}{dt} + \frac{dW}{dt}$		
$Q = -W = nRT \ln\left($	$\left(\frac{V_2}{V_1} \right)$ Isothermal process (T = constant)	
$\Delta U = nC_v \Delta T$	Any process	

$$\gamma = \frac{C_P}{C_V}$$

 $\frac{1}{2}kT$

Average energy / molecule for each degree of freedom

Part III: Modern Physics

