Essential Physics II

英語で物理学の
エッセンス II

Lecture 4： $19-10-15$

News

Last week＇s homework：
2015／10／26（1 0月26日）

This week＇s homework：

Also due：2015／10／26（10月26日） on http：／／masteringphysics．com

Last lectures...

Temperature difference, ΔT

 moving energy: heat

$$
E_{\text {heat }}
$$

Ideal gases:

Ideal gas law: $p V=n R T$
\#mols
internal energy
increases, ΔU

$$
R=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol}
$$

T measures K for random motion of molecules: $\frac{3}{2} k T=\frac{1}{2} m \overline{v^{2}}$

Last lectures...

Quiz

An ideal gas has volume, V and pressure, p .
The thermal speed of the gas molecules is \mathbf{v}.

If both volume and pressure are doubled to 2 V and 2 p , what is the thermal speed of the gas molecules?
(a) v
(b) $2 v$
(c) $4 v$
(d) $\mathrm{v} / 2$
(e) $\quad \mathrm{v} / 4$

Last lectures...

An ideal gas has volume, V and pressure, p .
The thermal speed of the gas molecules is \mathbf{v}.

If both volume and pressure are doubled to 2 V and 2 p , what is the thermal speed of the gas molecules?
(a) v Ideal gas law: $p V=n R T \longrightarrow T_{1}=\frac{p_{1} V_{1}}{n R}$
(b) $2 v$

$$
T_{2}=\frac{p_{2} V_{2}}{n R}=\frac{4 p_{1} V_{1}}{n R}=4 T_{1}
$$

(c) $4 v$
(d) $\mathrm{v} / 2$
(e) $\mathrm{v} / 4$

Since: $\frac{3}{2} k T=\frac{1}{2} m \overline{v^{2}} \longrightarrow \bar{v}=\sqrt{\frac{3 k T}{m}}$

$$
\overline{v_{2}}=\sqrt{\frac{3 k T_{2}}{m}}=\sqrt{\frac{3 k\left(4 T_{1}\right)}{m}}=2 \overline{v_{1}}
$$

Heat and Work

Joule's apparatus

You stir water (vigorously) with a spoon.
The water's temperature, T ...
(A) increases
(B) decreases
(C) unchanged

No temperature difference between spoon and water: $\Delta T=0$
No heat is transferred. Spoon does work on the water.
Mechanical work \Rightarrow increases water's internal energy

Joule's apparatus

Joule's apparatus

What is the temperature increase, ΔT ?
(Assume all energy is converted to heat)
$c_{\text {oil }}=1800 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
(A) $10^{\circ} \mathrm{C}$
(B) $1^{\circ} \mathrm{C}$
(C) $0.1^{\circ} \mathrm{C}$
(D) $0.01^{\circ} \mathrm{C}$
(E) $0^{\circ} \mathrm{C}$

Joule's apparatus

What is the temperature increase, ΔT ?
(Assume all energy is converted to heat)
$c_{\text {oil }}=1800 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
Potential energy: $\Delta U=m g \Delta h$

$$
\begin{aligned}
& =(2 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(1 \mathrm{~m}) \\
& =19.62 \mathrm{~J}
\end{aligned}
$$

Heat energy: $Q=m_{\text {oil }} c \Delta T$

$$
\begin{aligned}
\Delta T=\frac{19.62 \mathrm{~J}}{(1 \mathrm{~kg})(1800 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})} \simeq & 0.01 \mathrm{~K} \\
& =\underset{(\max)}{ } 0.0{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Joule's apparatus

Temperature can be increased by...

Heating:
Temperature difference between flame and water
Heat energy $\quad \square$ internal energy
$Q=m c \Delta T \quad$ higher T

Doing work:
Water is stirred
Mechanical energy \Rightarrow internal energy W
higher T
Same final state: T is higher

First Law of Thermodynamics

Change in internal energy

Ist law of thermodynamics:
The change in internal energy of a system depends only on the net heat transferred to the system and the net work done on the system, independent of the particular processes involved.

How the energy moves is not important

First Law of Thermodynamics

$\Delta U=Q+W$

Rate of energy flow

Rate of change of internal energy

Rate of
Rate at which work is done on the system

First Law of Thermodynamics

A power plant supplies energy at a rate of 3.0 GW .
\downarrow steam
drives turbine for electricity $\sqrt{7}$

Used steam is cooled in the water

If the power plant produces electrical energy at a rate of 1.0 GW , what is the rate of heat transfer to the water?

$$
\begin{aligned}
& \frac{d U}{d t}=\frac{d Q}{d t}+\frac{d W}{d t} \rightarrow \frac{d Q}{d t}=\frac{d U}{d t}-\frac{d W}{d t}=-3.0 \mathrm{GW}-(-1.0 \mathrm{GW}) \\
&=-2.0 \mathrm{GW} \quad \begin{array}{c}
\text { extracting } \\
\text { energy }
\end{array} \text { doing } \\
& \text { work }
\end{aligned}
$$

First Law of Thermodynamics

A heat source supplies heat to a gas at a rate of 187.0 W The gas does work at a rate of I30.9 W

What rate does the internal energy (dU/dt) of the gas change?
(a) 56.1 W

$$
\frac{d U}{d t}=\frac{d Q}{d t}+\frac{d W}{d t}
$$

(b) 318 W

$$
=187 \mathrm{~W}-130.9 \mathrm{~W}
$$

(c) -56.1 W

$$
=56.1 \mathrm{~W}
$$

(d) 187 W

First Law of Thermodynamics

A gas expands at constant T to twice ($\times 2$) its original volume.
During the expansion, the gas absorbs 200 kJ of heat.

What is the change in internal energy of the gas during the expansion?

What measures internal energy (U) ?
(a) 0 kJ

Temperature (T).
(b) 100 kJ

Does T change? No.
(c) 200 kJ
(d) 400 kJ

Therefore does U change?

First Law of Thermodynamics

A gas expands at constant T to twice ($\times 2$) its original volume.
During the expansion, the gas absorbs 200 kJ of heat.

How much work does the gas do during the expansion?

$$
\Delta U=Q+W
$$

(a) 0 kJ
(b) 100 kJ

$$
0=200 \mathrm{~kJ}+W
$$

(c) 200 kJ
work done on the gas: $W=-200 \mathrm{~kJ}$
(d) 400 kJ
work done by the gas: 200 kJ

Reversible \& Irreversible

$\Delta U=Q+W \quad$ First law applies to any system
but...

Ideal gas: $p V=n R T$

Only need 2 variables
[(p, V) or (V, T) or $(T, p)]$

 V

Reversible Process

Gas System: Gas ball immersed (covered by) water in equilibrium

Water

If water T increases slowly:
Gas and water change T together
Always in equilibrium
Change follows curve

quasi-static process
If water T decreases slowly:
Change follows same curve
reversible process

Irreversible Process

System: Gas ball immersed (covered by) water in equilibrium

If water T increases quickly:
e.g. pour boiling water over cold gas ball

Gas and water NOT in equilibrium

Different p and T in different regions
\Rightarrow not well-defined values
irreversible process

Work

Ideal gas: $p V=n R T$ Insulated cylinder
(no heat loss, $E_{\text {out }}=0$) Insulated cylinder
(no heat loss, $E_{\text {out }}=0$)

Volume can change

$$
1
$$

\qquad

Pressure, p
Cross-section area, A
Reversible process
How much work is done on the gas?

Work

Force from gas: $F_{\text {gas }}=p A$
Gas does work: $\Delta W_{\text {gas }}=F_{\text {gas }} \Delta x$

Newton's 3rd Law

$$
\begin{aligned}
& =p A \Delta x \\
& =p \Delta V
\end{aligned}
$$

Work done on the gas: $\Delta W=-\Delta W_{\text {gas }}=-p \Delta V$

But... p maybe changes as \vee changes: $d W=-p d V$
small volume change: P ~ constant

Work

2 gas cylinders start and end in the same state.

$$
\left(p_{i}, V_{i}\right) \rightarrow\left(p_{f}, V_{f}\right)
$$

They move between the 2 states by different processes.

What is the same for both cylinders?

(a) work done on or by the gas
quantities that do not depend
(b) heat added or removed on the HOW you reach a state (path taken) = state variables
(c) change in internal energy

Work

$$
W=-\int_{V_{1}}^{V_{2}} p d V
$$

work done on gas during volume change

What happens when 1 of $\quad p \quad$ (pressure)
V (volume)
T (temperature)
$Q \quad$ (heat)
is constant (no change) ?

Isothermal ($\mathrm{T}=$ constant)

Isothermal ($T=$ constant)

Internal energy, U from molecules' kinetic energy (motion)

Gas T

Therefore, constant $\mathrm{T}=$ constant U
Ist law of thermodynamics: $\Delta U=0=Q+W \Rightarrow Q=-W$ since: $W=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)$

$$
Q=-W=n R T \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

Isothermal

How much work does the bubble do as it rises to the surface?

Assume $\mathrm{T}=$ constant $=300 \mathrm{~K}$

$$
p_{\text {atm }}=101 \mathrm{kPa}
$$

Isothermal process: $-W=\underset{? n}{ } \begin{gathered}n \\ ? l\end{gathered}\left(\begin{array}{c}\left(\frac{V_{2}}{V_{1}}\right.\end{array}\right)$

Isothermal

$T=300 \mathrm{~K}$
$8 \mathrm{~mm} \uparrow$ $p=350 \mathrm{kPa}$

How much work does the bubble do as it rises to the surface?

25 m
Assume $\mathrm{T}=$ constant $=300 \mathrm{~K}$

$$
p_{\mathrm{atm}}=101 \mathrm{kPa}
$$

Isothermal process: $-W=n R T \ln \left(\frac{V_{2}}{V_{1}}\right)$
ideal gas: $\curvearrowleft V=n R T$

$p_{1} V_{1}=$ constant $=p_{2} V_{2} \Rightarrow \frac{V_{2}}{V_{1}}=\frac{p_{1}}{p_{2}}=3.5$
$-W=\frac{4}{3} \pi r^{3} p \ln 3.5=-0.94 \mathrm{~J}$

Isothermal

An ideal gas expands isothermally at 300 K . Its volume increased from $0.020 \mathrm{~m}^{3}$ to $0.040 \mathrm{~m}^{3}$.

The final pressure is 120 kPa . The heat transfer to the gas....?

$$
R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

(A) 3.3 kJ
(B) 1.7 kJ
(C) -3.3 kJ
(D) $\quad-1.7 \mathrm{~kJ}$
(E) 0.0 kJ

Isothermal

An ideal gas expands isothermally at 300 K . Its volume increased from $0.020 \mathrm{~m}^{3}$ to $0.040 \mathrm{~m}^{3}$.

The final pressure is 120 kPa . The heat transfer to the gas....?
(A) 3.3 kJ
(B) 1.7 kJ
(C) -3.3 kJ
(D) $\quad-1.7 \mathrm{~kJ}$
(E) 0.0 kJ

$$
\begin{aligned}
& p V=n R T) \text { constant } \\
& \left(120 \times 10^{3} \mathrm{~Pa}\right)\left(0.040 \mathrm{~m}^{3}\right)=n R T \\
& -W
\end{aligned} \begin{aligned}
& n R T \ln \left(\frac{V_{2}}{V_{1}}\right) \\
&=\left(120 \times 10^{3} \mathrm{~Pa}\right)\left(0.040 \mathrm{~m}^{3}\right) \ln \left(\frac{0.040}{0.02}\right) \\
&=3.3 \mathrm{~kJ} \\
& Q=-W=3.3 \mathrm{~kJ}
\end{aligned}
$$

Constant volume, V

constant volume: isometric isochoric isovolume
volume does not change $\rightleftharpoons W=0$ Ist law of thermodynamics: $\Delta U=Q$ Introduce molar specific heat at constant volume, C_{V} :
$Q=n C_{V} \Delta T$
(constant-volume)
\# moles
C per unit mass (last lecture)
C_{V} per mol

$$
\Delta U=n C_{V} \Delta T \quad \text { (any process) }
$$

U only depends on T: $\frac{\Delta U}{\Delta T}=$ constant

Isobaric ($p=$ constant)

System changes along isobar: curve of constant P
 Work done on gas = -(area)
 $$
W=-p\left(V_{2}-V_{1}\right)=-p \Delta V
$$

Ist law of thermodynamics: $Q=\Delta U-W=\Delta U+p \Delta V$
Since: $\Delta U=n C_{V} \Delta T$
$Q=n C_{V} \Delta T+p \Delta V$
Introduce molar specific teat at constant pressure, C_{P} :
$Q=n C_{P} \Delta T$
$n C_{p} \Delta T=n C_{V} \Delta T+p \Delta V$
isobaric process

Isobaric ($p=$ constant)

How are C_{V} and C_{p} related?
Ideal gas law: $p V=n R T \Longrightarrow p \Delta V=n R \Delta T$
Therefore:
$n C_{p} \Delta T=n C_{V} \Delta T+p \Delta V \Rightarrow n C_{p} \Delta T=n C_{V} \Delta T+n R \Delta T$
So: $C_{p}=C_{V}+R \quad$ molar specific heat
For solids and liquids, expansion is small

Therefore, work is small: $C_{p} \sim C_{V}$

Adiabatic $(\mathrm{Q}=0)$

No heat flow : $Q=0$

Quickly occurring processes ~ adiabatic (finished before heat transfer occurs)
e.g.
combustion engine

Ist law of thermodynamics: $\Delta U=W \quad$ adiabatic process

Adiabatic $(\mathrm{Q}=0)$

Work \propto internal energy \triangle W done by gas lowers gas U

If V increases, gas does $W \Rightarrow U$ decreases
Since $\mathrm{Q}=0 \Longrightarrow \mathrm{~T}$ decreases
Since $p V=n R T \Rightarrow \mathrm{p}$ decreases

Isothermal changes only V and p

Adiabat : steeper than isotherms

$$
p V^{\gamma}=\text { constant } \quad \gamma=C_{p} / C_{V}
$$

Adiabatic $(\mathrm{Q}=0)$
 Quiz

$p V^{\gamma}=$ constant
Rewrite this equation in terms of T :
(a) $V^{\gamma}=T$
(b) $T V^{\gamma}=$ constant
(c) $T V^{\gamma-1}=$ constant
(d) $T^{\gamma-1} V=$ constant

Adiabatic $(\mathrm{Q}=0)$

Quiz
$p V^{\gamma}=$ constant
Rewrite this equation in terms of T :

Ideal gas: $p V=n R T$

$$
\Rightarrow p=\frac{n R T}{V}
$$

$T V^{\gamma-1}=$ constant

Adiabatic $(\mathrm{Q}=0)$

Diesel Engine

Compressed gas raises $T \rightarrow 500^{\circ} \mathrm{C}$ and ignites (starts burning) fuel

What is compression ratio, $\frac{V_{b}}{V_{a}}$?
Initial $T=20^{\circ} \mathrm{C}$ and $\gamma=1.4$
$T V^{\gamma-1}=\mathrm{constant}$

$$
T_{\mathrm{b}} V_{\mathrm{b}}^{\gamma-1}=T_{\mathrm{a}} V_{\mathrm{a}}^{\gamma-1}
$$

before after
$\frac{V_{b}^{\gamma-1}}{V_{a}^{\gamma-1}}=\frac{T_{a}}{T_{b}} \Rightarrow \frac{V_{b}}{V_{a}}=\left(\frac{T_{a}}{T_{b}}\right)^{1 / \gamma-1}=\left(\frac{500+273 \mathrm{~K}}{20+273 \mathrm{~K}}\right)^{1 / 0.4}=11$

Adiabatic $(\mathrm{Q}=0)$

Since $\quad W=-\int_{V_{1}}^{V_{2}} p d V \quad$ and $\quad p V^{\gamma}=$ constant $=C$
What is the work done by an adiabatic gas?

$$
\begin{aligned}
p=\frac{C}{V^{\gamma}} \Rightarrow W=-\int_{V_{1}}^{V_{2}} \frac{C}{V^{\gamma}} d V & =-\int_{V_{1}}^{V_{2}} C V^{-\gamma} d V \\
p V^{\gamma}=C & =\left[-\frac{C V^{-\gamma+1}}{-\gamma+1}\right]_{V_{1}}^{V_{2}}
\end{aligned}
$$

$$
W=\frac{p_{2} V_{2}-p_{1} V_{1}}{\gamma-1}
$$

Ideal gas processes

Table 18.1 Ideal-Gas Processes

[^0]
Cyclic Processes

Systems that return periodically to the same state

(p, V, T)
e.g. refrigerator

liquid looses heat outside

liquid removes heat from inside

System moves between ' A ' and ' B '

Cyclic Processes

Cyclic processes can involve:
processes
$p \uparrow \cdot A$

Cyclic Processes

An ideal gas has $\gamma=1.4, \mathrm{~V}=4.0 \mathrm{~L}, \mathrm{~T}=300 \mathrm{~K}$ and $\mathrm{p}=100 \mathrm{kPa}$.
I. Compressed adiabatically to $0.25 \mathrm{~V} \quad A \rightarrow B$
2. Cooled at constant-volume back to $300 \mathrm{~K} \quad B \rightarrow C$
3. Expands isothermally to $\mathrm{V} \quad C \rightarrow A$

How much work is done on the gas?

Cyclic Processes

An ideal gas has $\gamma=1.4, \mathrm{~V}=4.0 \mathrm{~L}, \mathrm{~T}=300 \mathrm{~K}$ and $\mathrm{p}=100 \mathrm{kPa}$.
I. Compressed adiabatically to $0.25 \mathrm{~V} \quad A \rightarrow B$
2. Cooled at constant-volume back to $300 \mathrm{~K} \quad B \rightarrow C$
3. Expands isothermally to $\mathrm{V} \quad C \rightarrow A$

How much work is done on the gas?

Constant-volume $B \rightarrow C$
volume does not change
$W=0$

Cyclic Processes

An ideal gas has $\gamma=1.4, \mathrm{~V}=4.0 \mathrm{~L}, \mathrm{~T}=300 \mathrm{~K}$ and $\mathrm{p}=100 \mathrm{kPa}$.
I. Compressed adiabatically to $0.25 \mathrm{~V} \quad A \rightarrow B$
2. Cooled at constant-volume back to $300 \mathrm{~K} \quad B \rightarrow C$
3. Expands isothermally to $\mathrm{V} \quad C \rightarrow A$

How much work is done on the gas?

$$
\begin{aligned}
&\text { Isotherm: } C \rightarrow A \quad W=-n R T) \ln \left(\frac{V_{A}}{V_{C}}\right) \\
& \text { Ideal gas: } p V=n R T \\
&=p_{A} V_{A}=\left(100 \times 10^{3}\right)\left(4 \times 10^{-3}\right) \\
& \underbrace{}_{i}=400 \mathrm{~J}
\end{aligned}
$$

Cyclic Processes

An ideal gas has $\gamma=1.4, \mathrm{~V}=4.0 \mathrm{~L}, \mathrm{~T}=300 \mathrm{~K}$ and $\mathrm{p}=100 \mathrm{kPa}$.
I. Compressed adiabatically to $0.25 \mathrm{~V} \quad A \rightarrow B$
2. Cooled at constant-volume back to $300 \mathrm{~K} \quad B \rightarrow C$
3. Expands isothermally to $\mathrm{V} \quad C \rightarrow A$

How much work is done on the gas?

$$
\begin{aligned}
W_{\mathrm{ABCA}} & =W_{\mathrm{AB}}+W_{\mathrm{BC}}+W_{\mathrm{CA}} \\
& =741 \mathrm{~J}+0 \mathrm{~J}-555 \mathrm{~J} \\
& =186 \mathrm{~J}
\end{aligned}
$$

Cyclic Processes

Quiz

What is the work done?

$1 \mathrm{~L}=0.001 \mathrm{~m}^{3}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$

(a) -8120 J
(c) 4050 J
(b) 0 J
(d) -4101 J

Cyclic Processes

isobaric: $W=-p\left(V_{2}-V_{1}\right)$

$$
\begin{aligned}
& =-(101,325 \mathrm{~Pa})\left(-40 \times 10^{-3} \mathrm{~m}^{3}\right) \\
& =4053 \mathrm{~J}
\end{aligned}
$$

constant $\mathrm{V}: \quad W=0$

Cyclic Processes

What is the work done on the ideal gas?

$$
\begin{aligned}
1 \mathrm{~L} & =0.001 \mathrm{~m}^{3} \\
1 \mathrm{~atm} & =101,325 \mathrm{~Pa}
\end{aligned}
$$

isothermal: $W=\underset{\substack{n R T \\ \text { constant }}}{ } \ln \left(\frac{V_{2}}{V_{1}}\right)$

$$
\begin{aligned}
& p V=(5.0 \times 101,325 \mathrm{~Pa})\left(10 \times 10^{-3}\right)=n R T \\
& W=-(5.0 \times 101,325 \mathrm{~Pa})\left(10 \times 10^{-3}\right) \ln \left(\frac{50}{10}\right) \\
&=-8153.8 \mathrm{~J}
\end{aligned}
$$

Cyclic Processes

What is the work done on the ideal gas?

$1 \mathrm{~L}=0.001 \mathrm{~m}^{3}$
$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$

Total work: $=4053+0-8153.8 \mathrm{~J}$
$=-4100.8 \mathrm{~J}$

Specific heats: $C_{V} \& C_{p}$

Last lecture:

(for 1 molecule)
average K of molecule
gas temperature
Total internal energy of n mols: $U=n N_{A}\left(\frac{1}{2} m \overline{v^{2}}\right)$

$$
=\frac{3}{2} n N_{A} k T
$$

$$
=\frac{3}{2} n R T
$$

From $\Delta U=n C_{V} \Delta T \rightarrow C_{V}=\frac{1}{n} \frac{\Delta U}{\Delta T}=\frac{3}{2} R$

Specific heats: $C_{V} \& C_{p}$

and: $\quad \gamma=\frac{C_{p}}{C_{V}} \quad=\frac{C_{V}+R}{C_{V}}$
Therefore: $\gamma=\frac{\frac{5}{3} R}{\frac{3}{2} R}=\frac{5}{3}=1.67$

Great! But....

Specific heats: $C_{V} \& C_{p}$

$\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T$ to find this...

Assumed: Gas molecules have no internal structure

OK for monatomic molecules:

Ar

Specific heats: $C_{V} \& C_{p}$

Diatomic molecules can move in 5 directions

1 molecule =
2 atoms

translational motion

5 degrees of freedom

Equipartition Theorem

In thermodynamic equilibrium,
Average energy $/$ molecule $=\frac{1}{2} k T$ for each degree of freedom
Equipartition theorem
e.g. monatomic molecule, 3 degrees of freedom:

$$
U=3\left(\frac{1}{2} k T\right)=\frac{3}{2} k T
$$

since all energy is kinetic: $\quad U=K=\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T$

Equipartition Theorem

e.g. diatomic molecule, 5 degrees of freedom:

Av. energy / molecule: $U=5\left(\frac{1}{2} k T\right)=\frac{5}{2} k T$
Total internal energy of n mols: $\quad U=\frac{5}{2} n N_{A} k T$

$$
=\frac{5}{2} n R T
$$

Therefore: $C_{V}=\frac{1}{n} \frac{\Delta U}{\Delta T}=\frac{5}{2} R$
(as before)
and: $\gamma=\frac{C_{p}}{C_{V}}=\frac{C_{V}+R}{C_{V}}=\frac{7}{5}=1.4$

Equipartition Theorem

e.g. polyatomic molecule, 6 degrees of freedom:

3 translational (x, y, z)
3 rotational

$$
\begin{aligned}
U & =3 n R T \\
C_{V} & =3 R \\
\gamma & =\frac{4}{3} \simeq 1.33
\end{aligned}
$$

Equipartition Theorem

At very high T, diatomic molecules can also vibrate:

Adds kinetic energy (K)
... and potential energy

+ 2 degrees of freedom

Total: 7 degrees of freedom
(only at high T)

Equipartition Theorem

A gas mixture has 2.0 mol of oxygen $\left(\mathrm{O}_{2}\right)$ and 1.0 mol of argon (Ar) Find the volume specific heat, C_{V}
$O_{2}: \quad 5$ degrees of freedom $\quad U=\frac{5}{2} n R T=\frac{5}{2} 2.0 R T=5 R T$
Ar: 3 degrees of freedom $\quad U=\frac{3}{2} n R T=\frac{3}{2} 1.0 R T=\frac{3}{2} R T$
Total internal energy: $\quad U=5 R T+\frac{3}{2} R T=\frac{13}{2} R T$

$$
\frac{\Delta U}{\Delta T}=\frac{13}{2} R
$$

$$
C_{V}=\frac{1}{n} \frac{\Delta U}{\Delta T}=\frac{1}{2.0+1.0} \frac{13}{2} R=2.2 R
$$

[^0]: © 2012 Pearson Education, Inc.

