Essential Physics II

英語で物理学の
エッセンス II

Lecture 3： $15-10-15$

Homework

If you did not do the homework... WHY?

http://masteringphysics.com
http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

Last Lecture

Temperature:
2 objects have the same T when in thermodynamic equilibrium

SI unit: kelvin [K]

Heat is energy moving because of a difference in temperature (ΔT)

$$
Q=m \subset \triangle T
$$

Heat can be transferred via conduction, convection and radiation

Last Lecture

The specific heat (c) of water is greater than iron.
If you drop hot iron into a water bucket, the heat gained by the water is...
(a) larger than the heat lost by iron
(b) smaller than the heat lost by iron
(c) the same as the heat lost by iron

T is different, but energy is conserved

Heat and Matter

Ideal Gas Law

How are...

Volume (V)

Temperature (T)

Ideal Gas Law

Volume (V)

Temperature (T)

If V is constant, what happen to p if we lower T ?
(a) Pressure goes down \downarrow
(b) Pressure goes up \uparrow
(c) Pressure stays the same

Ideal Gas Law

V is constant, \square

$p \propto T$

Ideal Gas Law

Volume (V)

Temperature (T)

If V is constant, what happen to p if we lower T ?
(a) Pressure goes down $\downarrow p \propto T$
(b) Pressure goes up \uparrow
(c) Pressure stays the same

Ideal Gas Law

Volume (V)

Temperature (T)

If T is constant, what happen to p if we lower V ?
(a) Pressure goes down \downarrow
(b) Pressure goes up \uparrow
(c) Pressure stays the same

Ideal Gas Law

Ideal Gas Law

Volume (V)

Temperature (T)

If T is constant, what happen to p if we lower V ?
(a) Pressure goes down \downarrow
(b) Pressure goes up $\quad \uparrow p \propto \frac{1}{V}$
(c) Pressure stays the same

Ideal Gas Law

Volume (V)

Temperature (T)

If p is constant, what happen to V if we lower T ?
(a) Volume goes down
(b) Volume goes up

(c) Volume stays the same

Ideal Gas Law

pis constant, if fr

T goes down

V goes down \downarrow

$$
T \propto V
$$

Ideal Gas Law

Volume (V)

Temperature (T)

If p is constant, what happen to V if we lower T ?
(a) Volume goes down

(b) Volume goes up \uparrow
(c) Volume stays the same

Ideal Gas Law

$$
p \propto T \quad p \propto \frac{1}{V} \quad T \propto V
$$

Therefore: $\quad p V \propto \Gamma$

Bonus question:

If V and T are constant, what happens to p if we lower N ?
(a) Pressure goes down
(b) Pressure goes up
(c) Pressure stays the same

Ideal Gas Law

$$
p \propto T \quad p \propto \frac{1}{V} \quad T \propto V \quad p \propto N
$$

Therefore:
$p V=N k T$
ideal-gas law
$\mathrm{N}=$ \# of gas molecules

$$
\begin{gathered}
k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
\text { Boltzmann's constant }
\end{gathered}
$$

very large! \downarrow

count \# of moles: I mole, $N_{A}=6.023 \times 10^{23}$ atoms Avogadro's number

$$
\begin{aligned}
& p V=n, N_{A} k T=n \underset{T}{R} T \\
& R=N_{A} k=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \\
& \text { universal gas constant }
\end{aligned}
$$

Ideal Gas Law

What is the volume, V , of 1.00 mol of an ideal gas at $\mathrm{T}=0^{\circ} \mathrm{C}$
and $\mathrm{p}=101.3 \mathrm{kPa}$?

$$
R=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol}
$$

Ideal gas law: $p V=n R T$

$$
\begin{aligned}
V=\frac{n R T}{p} & =\frac{(1.00 \mathrm{~mol})(8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol})(273 \mathrm{~K})}{1.01 \times 10^{5} \mathrm{~Pa}} \\
& =22.4 \times 10^{-3} \mathrm{~m}^{3} \\
& =22.4 \mathrm{~L}
\end{aligned}
$$

Ideal Gas Law

An ideal gas has $\mathrm{T}=109^{\circ} \mathrm{C}$ and $\mathrm{p}=1.2 \times 10^{4} \mathrm{~Pa}$. How many gas molecules are in a cubic centimeter $\left(1 \mathrm{~cm}^{3}\right)$?

$$
R=8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol} \quad N_{A}=6.023 \times 10^{23}
$$

$$
p V=n R T \Rightarrow n=\frac{p V}{R T}
$$

(a) 7.98×10^{18} molecules

$$
=\frac{\left(1.2 \times 10^{4} \mathrm{~Pa}\right)\left(0.01^{3} \mathrm{~m}^{3}\right)}{(8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol})(109+273 \mathrm{~K})}
$$

(b) $3.8 \times 10^{\mathbf{- 6}}$ molecules

$$
=3.8 \times 10^{-6} \text { moles }
$$

(c) 2.3×10^{18} molecules

$$
N=3.8 \times 10^{-6} \times 6.023 \times 10^{23}
$$

(d) 1.3×10^{5} molecules

$$
=2.27 \times 10^{18} \text { molecules }
$$

Kinetic Theory of Gases

$p V=n R T$ is a very simple relation!

Assume:

(I) Gas is made of identical molecules

nothing inside (no internal structure)
~ True, if distance between gas molecules >> molecule size

Kinetic Theory of Gases

$p V=n R T$ is a very simple relation!
... why does it work?

Assume:
(II) No forces between molecules

only kinetic energy (K)

$$
K=\frac{1}{2} m v^{2}
$$

no potential energy (U)

Kinetic Theory of Gases

$p V=n R T$ is a very simple relation! ... why does it work? ©

Assume:

(III) molecules moves in random directions

speed ○(direction

Kinetic Theory of Gases

$p V=n R T$ is a very simple relation!
... why does it work?

Assume:
(IV) collisions with container wall are elastic
 conserve molecule's momentum energy

before

after

$$
\begin{aligned}
E_{\mathrm{before}} & =E_{\mathrm{after}} \\
p_{\mathrm{m}, \mathrm{before}} & =p_{\mathrm{m}, \mathrm{after}}
\end{aligned}
$$

Kinetic Theory of Gases

N molecules in box

Molecules collide with wall with force, \bar{F}_{i}
L many molecules \rightarrow continuous F gas pressure, $p=\frac{\bar{F}}{A} \leftarrow F$? O?

1 particle's collision with right wall:
Force, \bar{F}, only in x-direction: only \bar{v}_{x} changes
$\bar{v}_{a, y}=\bar{v}_{b, y}$

$$
\bar{v}_{a, x}=-\bar{v}_{b, x} \rightarrow \Delta v=2 v_{x}
$$

Newton's 2nd law for particle i

$$
\bar{F}_{i}=\frac{\Delta \bar{p}_{m i}}{\Delta t_{i}} \quad \begin{aligned}
& \text { change in momentum, } \Delta p_{m i}=m \Delta v_{i} \\
& \text { time between collisions, } \Delta t_{i}=2 L / v_{x, i}
\end{aligned}
$$

Kinetic Theory of Gases

N molecules in box

Molecules collide with wall with force, \bar{F}_{i}
士 many molecules \rightarrow continuous F gas pressure, $p=\frac{\bar{F}}{A} \leftarrow F$? O?

1 particle's collision with right wall:
Force, \bar{F}, only in x-direction: only \bar{v}_{x} changes
$\bar{v}_{a, y}=\bar{v}_{b, y} \quad$ velocity x -component

$$
\bar{v}_{a, x}=-\bar{v}_{b, x} \rightarrow \Delta v=2 v_{x}
$$

Newton's 2nd law for particle i

$$
\bar{F}_{i}=\frac{\Delta \bar{p}_{m i}}{\Delta t_{i}}=\frac{2 m v_{x, i}}{2 L / v_{x, i}}=\frac{m v_{x, i}^{2}}{L}
$$

Kinetic Theory of Gases

N molecules in box

Total force on wall: $\bar{F}=\sum \bar{F}_{i}$

$$
\begin{gathered}
p=\frac{\bar{F}}{A}=\frac{\sum \bar{F}_{i}}{A}=\frac{\sum m v_{x, i}^{2} / L}{A}=\frac{m \sum v_{x, i}^{2}}{(A L)^{2}} \\
=\frac{N}{N} \frac{m \sum v_{x, i}^{2}}{V}=\frac{m N\left(v_{x, i}^{2}\right.}{V}=\frac{m N}{V} \bar{v}_{x}^{2} \\
=1 \\
\text { average } v_{x}^{2} \text { of all molecules } \\
=v_{x}^{2}
\end{gathered}
$$

But molecules move in random directions (III) : $\overline{v_{x}^{2}}=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}$
Average speed: $\overline{v^{2}}=\overline{v_{x}^{2}}+\overline{v_{y}^{2}}+\overline{v_{z}^{2}}=3 \overline{v_{x}^{2}} \rightarrow \overline{v_{x}^{2}}=\frac{1}{3} \overline{v^{2}}$

$$
p=\frac{m N}{3 V} \overline{v^{2}}
$$

Kinetic Theory of Gases

N molecules in box

$$
p=\frac{m N}{3 V} \overline{v^{2}} \leadsto p V=\left(\frac{2}{2} \frac{m N}{3} \overline{v^{2}}\right.
$$

$$
p=\frac{m N}{3 V} \bar{v}^{2}
$$

$$
=\frac{2}{3} N\left(\frac{1}{2} m \overline{v^{2}}\right)
$$

But... ideal gas law: $p V=N k T$
Average kinetic energy of molecule
macroscopic property
(Temperature, T)
microscopic property (molecule's energy) ©

Kinetic Theory of Gases

But... ideal gas law: $p V=N k T$
Average kinetic energy of molecule
macroscopic property (Temperature, T)

N molecules in box

$$
p=\frac{m N}{3 V} \overline{v^{2}} \Rightarrow p V=\left(\frac{2}{2} \frac{m N}{3} \overline{v^{2}}\right.
$$

$=1$

$$
=\frac{2}{3} N\left(\frac{1}{2} m \overline{v^{2}}\right)
$$

Kinetic Theory of Gases

Find the average kinetic energy of a molecule at $20^{\circ} \mathrm{C}$.

Average kinetic energy: $\bar{K}=\frac{1}{2} m \bar{v}^{2}=\frac{3}{2} k T$

$$
\begin{aligned}
& =\frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(293 \mathrm{~K}) \\
& =6.07 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

Kinetic Theory of Gases

... what is the speed of a nitrogen molecule $\left(\mathrm{N}_{2}\right)$ with this energy?

$$
\begin{aligned}
m & =2(14 u)\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right) \\
& =4.65 \times 10^{-26} \mathrm{~kg}
\end{aligned}
$$

$$
\bar{K}=\frac{1}{2} m \overline{v^{2}} \Rightarrow v=\sqrt{\frac{2 K}{m}}=\sqrt{\frac{2\left(6.07 \times 10^{-21} \mathrm{~J}\right)}{4.65 \times 10^{-26} \mathrm{~kg}}}
$$

$$
=511 \mathrm{~m} / \mathrm{s}
$$

Kinetic Theory of Gases

A 5.0 litre gas tank holds 1.4 moles of helium (He) and 0.70 moles of oxygen $\left(\mathrm{O}_{2}\right)$ at $\mathrm{T}=260 \mathrm{~K}$.

Find the TOTAL (translational) kinetic energy of the gas.
(a) 6.8 kJ
(b) 6.1 kJ
(c) 7.6 kJ
(d) 8.3 kJ

Kinetic Theory of Gases

A 5.0 litre gas tank holds 1.4 moles of helium (He) and 0.70 moles of oxygen $\left(\mathrm{O}_{2}\right)$ at $\mathrm{T}=260 \mathrm{~K}$.

Find the TOTAL (translational) kinetic energy of the gas.
(a) 6.8 kJ

K for one molecule: $K=\frac{3}{2} k T$

$$
\begin{aligned}
& \frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(260 \mathrm{~K}) \\
& =5.38 \times 10^{-21} \mathrm{~J}
\end{aligned}
$$

All molecules:

$$
\begin{align*}
& \left(\begin{array}{l}
1.4 \times 6.023 \times 10^{23} \\
\mathrm{He} \\
=6.8 \mathrm{~kJ}
\end{array}\right. \\
& =\frac{0.7}{\left.6.023 \times 10^{23}\right) \times 5.38 \times 10^{-21} \mathrm{~J}} \tag{2}\\
& \mathrm{O}_{2}
\end{align*}
$$

Molecule speeds

As T 个

$$
\frac{3}{2} k T=\frac{1}{2} m \overline{v^{2}} \Rightarrow \sqrt{v_{\text {th }}=\sqrt{\frac{3 k T}{m}}} \begin{aligned}
& \text { thermal speed }
\end{aligned}
$$

Typical molecular speed
but ... what are the range of speeds?

Typical speed \uparrow
But not all molecules have the same speed

Molecule speeds

Maxwell-Boltzmann distribution:
range of molecule speeds peak at typical speed, $v_{\text {th }}$ peak position depends on T

Higher T

Higher $v_{\text {th }}$
Larger range: more molecules at high and low speeds

reaction rates

faster at high T
foods keep longer at low T

Phase changes

++ heat energy

T increases...
...molecules move faster (++ kinetic energy)

But, if we add more heat
suddenly molecules move freely ...
... at the same T (and v)
This is a phase change

Phase changes

In a phase change

Energy is used to break molecule bonds

Temperature stays constant

Phase changes

A glass is full of ice at $0^{\circ} \mathrm{C}$
After 1 hour, half the ice has melted. Is the temperature,T....

(A) $<0^{\circ} \mathrm{C}$
(B) $\quad>0^{\circ} \mathrm{C}$
(C) $0^{\circ} \mathrm{C}$
(D) Depends on the glass

Heat energy goes into breaking molecular bonds

while there is ice, all energy used in bond breaking.
no energy raises molecule's kinetic energy (temperature)

Phase changes

Energy / mass needed for a phase change: heat of transformation, L [J/kg]

Solid-liquid change: heat of fusion, L_{f}

Liquid-gas change: heat of vaporization, L_{v}

$$
Q=L m
$$

(heat of transformation)

Energy needed to change phase of mass, m

Phase changes

CO has a low temperature for sublimation (dry ice)

Phase changes

Table 17.1 Heats of Transformation (at Atmospheric Pressure)

Substance	Melting Point (K)	$\boldsymbol{L}_{\mathrm{f}}(\mathrm{K} / \mathrm{kg})$	Boiling Point (K)	$\boldsymbol{L}_{\mathrm{v}}(\mathrm{K} / \mathrm{kg})$
Alcohol, ethyl	159	109	351	879
Copper	1357	205	2840	4726
Lead	601	24.7	2013	858
Mercury	234	11.3	630	296
Oxygen	54.8	13.8	90.2	213
Sulfur	388	53.6	718	306
Water	273	334	373	2257
Uranium dioxide	3120	259	3815	1533

Phase changes

When heating ice, what happens to T ?

When all ice is water, T increases again:
$c_{\text {water }}>c_{\text {ice }}$ water heats more slowly than ice: smaller gradient specific heat capacity
@ $100^{\circ} \mathrm{C}$, water becomes steam $\xrightarrow{L_{v} m}$ in $\mathrm{T}=$ constant

Phase changes

How much energy does it take to melt a 45 g ice cube?

$$
L_{f}=334 \mathrm{~kJ} / \mathrm{kg}
$$

(a) 22 kJ
(b) 15 kJ
(c) 0.1 kJ
$Q=L_{f} m$
$=(334 \mathrm{~kJ} / \mathrm{kg})(0.045 \mathrm{~kg})$
$=15.03 \mathrm{~kJ}$
(d) 15480 kJ

Phase changes

200 g of ice at $-10^{\circ} \mathrm{C}$ are added to 1.0 kg of water at $15^{\circ} \mathrm{C}$ Is there enough ice to cool the water to $0^{\circ} \mathrm{C}$?

Energy removed $\left(Q_{1}\right)$:
Energy to raise T to $0^{\circ} \mathrm{C} \quad+$ Energy to melt ice

$$
m_{\text {ice }} c_{\text {ice }} \Delta T_{\text {ice }}
$$

$$
m_{\mathrm{ice}} L_{f}
$$

$(0.20 \mathrm{~kg})(2.05 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K})(10 \mathrm{~K}) \quad+(0.20 \mathrm{~kg})(344 \mathrm{~kJ} / \mathrm{kg})$
$Q_{1}=4.1 \mathrm{~kJ}+66.8 \mathrm{~kJ}=70.9 \mathrm{~kJ}$

To cool water: $\quad Q_{2}=m_{\text {water }} c_{\text {water }} \Delta T_{\text {water }}$

$$
=(1.0 \mathrm{~kg})(4.184 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(15 \mathrm{~K})=62.8 \mathrm{~kJ}
$$

Phase changes

How much heat must you add to vapourise (turn to steam) 2.0 g of water at $0^{\circ} \mathrm{C}$?
(a) 1100 cal

$$
\begin{gathered}
l_{f}=80 \mathrm{cal} / \mathrm{g} \\
l_{v}=539 \mathrm{cal} / \mathrm{g} \\
c=1.0 \mathrm{cal} / \mathrm{g} \cdot \mathrm{~K}
\end{gathered}
$$

(b) 1100 kcal
(c) 1200 cal
(d) 1300 cal

Phase changes

How much heat must you add to vapourise (turn to steam) 2.0 g of water at $0^{\circ} \mathrm{C}$?
(a) 1100 cal

$$
\begin{aligned}
Q & =m c \Delta T+m L_{v} \\
& =(2.0 \mathrm{~g})(1.0 \mathrm{cal} / \mathrm{g} \cdot \mathrm{~K})(100 \mathrm{~K})+
\end{aligned}
$$

(b) 1100 kcal
$(2.0 \mathrm{~g})(539 \mathrm{cal} / \mathrm{g})$
(c) 1200 cal

$$
=1278 \mathrm{cal}
$$

(d) 1300 cal

Phase diagrams

Phase changes occur at a given T and a given p

Phase diagrams

Phase diagram: plot of pressure vs. temperature

Phase diagrams

Phase diagram: plot of pressure vs. temperature

Phase diagrams

Phase diagram: plot of pressure vs. temperature

Note: phase change is not fast!
Crossing lines takes a lot of energy

Phase diagrams

Phase diagram: plot of pressure vs. temperature

Phase diagrams

Phase diagram: plot of pressure vs. temperature

Sudden phase change disappears
No clear boundary between liquid and gas
gas changes gradually into liquid

Phase diagrams

Everest Base Camp is at 5365 m .
Water will boil here at:
(a) $100^{\circ} \mathrm{C}$
(b) $>100^{\circ} \mathrm{C}$
(c) $<100^{\circ} \mathrm{C}$
(d) $<0^{\circ} \mathrm{C}$

Thermal Expansion

Gas: $p V=n R T \longrightarrow V \propto T$
Also true for liquid and solid but... molecules closer © \rightarrow ○ than in a gas.

harder to expand and compress

Define how much solid/liquid expands:
coefficient of volume expansion $\quad \beta=\frac{\Delta V / V}{\Delta T}$ (assumes β not dependent on T and constant \mathbf{p})

Thermal Expansion

If object is long and thin...
Expansion / contraction greatest in 1D

$$
\alpha=\frac{\Delta L / L}{\Delta T} \quad \beta=3 \alpha
$$

only important to solids
(liquids / gases can change shape)

Thermal Expansion Quiz

You heat up an iron ring.
The hole in the middle...
(a) larger?
(b) smaller?
(c) does not change?

all dimensions expand equally

Thermal Expansion

Table 17.2 Expansion Coefficients*			
Solids	$\boldsymbol{\alpha}\left(\mathbf{K}^{-1}\right)$	Liquids and Gases	$\boldsymbol{\beta}\left(\mathbf{K}^{-1}\right)$
Aluminum	24×10^{-6}	Air	3.7×10^{-3}
Brass	19×10^{-6}	Alcohol, ethyl	75×10^{-5}
Copper	17×10^{-6}	Gasoline	95×10^{-5}
Glass (Pyrex)	3.2×10^{-6}	Mercury	18×10^{-5}
Ice	51×10^{-6}	Water, $1^{\circ} \mathrm{C}$	-4.8×10^{-5}
Invar ${ }^{\dagger}$	0.9×10^{-6}	Water, $20^{\circ} \mathrm{C}$	20×10^{-5}
Steel	12×10^{-6}	Water, $50^{\circ} \mathrm{C}$	50×10^{-5}

*At approximately room temperature unless noted.
${ }^{\dagger}$ Invar, consisting of 64% iron and 36% nickel, is an alloy designed to minimize thermal expansion.

- 2012 Pearson Education, Inc.

64 \% iron, 36\% nickel: designed for small thermal expansion
.... negative?

Thermal Expansion

Water ... is strange

\uparrow^{P}

normal

water

At constant T...
Solid will melt if P decrease
Solid will melt if P increased

Thermal Expansion

2 hydrogen atoms \bullet
1 oxygen atom
force between molecules (with H)
'Hydrogen bonding'

In water, hydrogen bonding moves molecules close

\rightarrow
dense structure

In ice, fixed structure moves molecules apart
\Rightarrow less dense
$>4^{\circ} \mathrm{C}$ high K moves molecules apart again. densest water at $4^{\circ} \mathrm{C}$

Thermal Expansion

Good for sea life!

In winter, ice forms only on surface

Bad for roads!

Physics in action

Superfluids

Superfluids

Helium-4 (${ }^{4} \mathrm{He}$) facts:

Liquid-gas change:
(Boiling point)

Very difficult to make helium-4 a liquid by cooling!
(Helium-4 is only a solid at very high pressures)

Below 2.17 K, helium-4 goes through a new phase change to become a superfluid

Superfluids

When do molecules (in theory) stop moving?
(a) $101^{\circ} \mathrm{C}$
(b) $0^{\circ} \mathrm{C}$
(c) 0 K
(d) They can never stop moving

Superfluids

How close to 0 K have scientists ever reached?
(a) $1 \times 10^{-9} \mathrm{~K}$
(b) $1 \times 10^{-6} \mathrm{C}$
(c) 0 K
(d) $1 \times 10^{-6} \mathrm{~K}$

Superfluids

What happens when the helium becomes a superfluid?
(a) the liquid bubbles
(b) the liquid becomes a gas
(c) the liquid becomes very stili)

(d) the liquid sublimes

Superfluids

The range of velocities in a superfluid are...

(a) much larger than normal fluid
(b) same as normal fluid
(c) much smaller than normal fluid
(d) (almost) infinity

Superfluids

Velocity distribution:

normal

Same T everywhere in fluid VERY small velocity range

Maxwell-Boltzmann distribution

Superfluids

Why does the superfluid leak out of the bucket?
(a) the cold cracked the plug in the bucket
(b) Quantum mechanics changes the fluid properties
(c) it becomes a gas and can escape the plug
(d) no one knows

Superfluids

A superfluid has no viscosity
friction for fluids

Can move through tiny holes in containers

Also, spread out and and climb up walls

