Essential Physics II

$$
\begin{gathered}
\text { 英語で物理学の } \\
\text { エッセンス II }
\end{gathered}
$$

Lecture II：｜4－｜2－｜5

Science news

December 6, 2010:
JAXA 'Akatsuki' spacecraft tried to enter Venus' orbit It failed.

Orbit insertion is tricky.
Normally, only I chance to get it right

Exhaust nozzle broke. Akatsuki Jeft Venus to orbit the sun

5 years later... Akatsuki tried again

December 9th, 2015: orbit successfully achieved

Science news

Electromagnetism

Maxwell's Equation

Last lecture

A changing \bar{B} field produces an \bar{E} field:
$\oint \bar{E} \cdot d \bar{r}=\bigoplus_{\uparrow} \frac{d \Phi_{B}}{d t}$
Faraday's law

The induced EMF opposes the flux change.
Lenz's law

movement against repulsion

movement against attraction

Last lecture

Conducting loop falls through a magnetic field.

What is the direction of the induced current as it leaves the field?

(A) clockwise
$\bar{B} \xrightarrow{\square}$ into page

Current acts to increase B-field
(B) anti-clockwise

Last lecture

Loop moves with constant speed from P to Q to R to S .
What happens to the magnitude of the current, I, in the loop between P and Q ?
(A) Increases
(C) Decreases
(B) Stays the same
(D) Unknown

Last lecture

Loop moves with constant speed from P to Q to R to S .
What happens to the magnitude of the current, I, in the loop between Q and R ?
(A) Increases
(C) Decreases
(B) Stays the same
(D) Unknown

Last lecture

Quiz

$$
\begin{array}{lllllll}
x & x & x & x & x & x & x
\end{array}
$$

Loop moves with constant speed from P to Q to R to S .

Last lecture

Conducting loop falls onto standing magnet.

What is the direction of the induced current as the loop approaches (enters) the magnet?
(seen from top of loop)

(A) clockwise
(B) anti-clockwise

\bar{B} around a bar magnet

Last lecture

Circular wire loop sits in a circuit.

What is the direction of the induced current when the circuit switch is closed?

(A) clockwise
(B) anti-clockwise

So far...

We have seen:

Electric fields, \bar{E}, are created by charges...
$\bar{E}=\frac{k q}{r^{2}} \hat{r}$
Coulomb's Law

$$
\oint \bar{E} \cdot d \bar{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}
$$

Gauss's Law for \bar{E}
... and charges feel a force in electric fields: $\bar{F}_{12}=q \bar{E}$

The work / charge needed to move a charge in an \bar{E} field:
$V_{\mathrm{AB}}=-\int_{A}^{B} \bar{E} \cdot d \bar{r} \quad$ electric potential difference

So far...

We have seen:

Magnetic fields, \bar{B}, are created by moving charges.

Biot-Savart Law

$$
\oint \bar{B} \cdot d \bar{r}=\mu_{0} I_{\text {encircled }}
$$

Ampere's Law
$\oint \bar{B} \cdot d \bar{A}=0$
Gauss's Law for \bar{B}
... and moving charges feel a force in magnetic fields: $\bar{F}=q \bar{v} \times \bar{B}$

So far...

We have seen:

A changing magnetic flux produces an electric field:

$$
\oint_{\text {Faradays Law }}^{\oint} \bar{E} \cdot d \bar{r}=\underbrace{-}_{\uparrow} \frac{d \Phi_{B}}{d t}
$$

movement against repulsion

movement against attraction
Lenz's Law

So far...

$$
\begin{array}{ll}
\bar{E}=\frac{k q}{r^{2}} \hat{r} \\
V_{\mathrm{AB}}=-\int_{A}^{B} \bar{E} \cdot d \bar{r} & \oint \bar{E} \cdot d \bar{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}
\end{array}
$$

$$
\oint \bar{B} \cdot d \bar{A}=0
$$

$$
d \bar{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \bar{l} \times \hat{r}}{r^{2}}
$$

$$
\oint \bar{B} \cdot d \bar{r}=\mu_{0} I_{\mathrm{encircled}}
$$

$$
\begin{aligned}
& \bar{F}_{\mathrm{EM}}=q \bar{E}+q \bar{v} \times \bar{B} \\
& \oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}
\end{aligned}
$$

The 4 laws

$$
\begin{aligned}
& \bar{E}=\frac{k q}{r^{2}} \hat{r} \\
& V_{\mathrm{AB}}=-\int_{A}^{B} \bar{E} \cdot d \bar{r}
\end{aligned}
$$

Maxwell's equations (... almost)
$\bar{F}_{\mathrm{EM}}=q \bar{E}+q \bar{v} \times \bar{B}$
Gauss's Law for $\bar{E} \quad \oint \bar{E} \cdot d \bar{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$

Gauss's Law for $\bar{B} \oint \bar{B} \cdot d \bar{A}=0$
Ampere's Law $\oint \bar{B} \cdot d \bar{r}=\mu_{0} I_{\text {encircled }}$

Faraday's Law $\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}$

The 4 laws

Gauss's Law for $\bar{E} \oint \bar{E} \cdot d \bar{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}$

Gauss's Law for $\bar{B} \quad \oint \bar{B} \cdot d \bar{A}=0$

Ampere's Law $\quad \oint \bar{B} \cdot d \bar{r}=\mu_{0} I_{\text {encircled }}$

Faraday's Law $\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}$

The 4 laws

$$
\text { Gauss's Law for } \bar{E} \oint \bar{E} \cdot d \bar{A}=\frac{q_{\mathrm{enclosed}}}{\epsilon_{0}}
$$

Because Maxwell made 2

 incredible discoveriesFaraday's Law

$$
\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}
$$

Maxwell 1: Ampere correction

$$
\begin{aligned}
& \oint \bar{E} \cdot d \bar{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}} \\
& \oint \bar{B} \cdot d \bar{A}=0
\end{aligned}
$$

Left-side of Gauss's laws

and

Left-side of Ampere's law and Faraday's law
are symmetric: $\quad \bar{E} \longleftrightarrow \bar{B}$

Maxwell 1: Ampere correction

Right-side of Gauss's laws is not symmetric ...
... but because there are no monopoles

If monopoles were found, these laws would be symmetric. $\bar{E} \longleftrightarrow \bar{B}$

OK

Maxwell 1: Ampere correction

$$
\begin{aligned}
& \oint \bar{E} \cdot d \bar{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}} \\
& \oint \bar{B} \cdot d \bar{A}=0 \\
& \oint \bar{B} \cdot d \bar{r}=\underbrace{\mu_{0} I_{\text {encircled }}} \begin{array}{l}
\text { Rarght-side of Ampere's law and } \\
\text { symmetric ... }
\end{array} \\
& \oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}+m_{\text {encircled also not }} \begin{array}{l}
\text { Ampere's law: } \\
\text { moving charges are the moving monopoles! } \\
\text { source of magnetic fields. } \\
\text { So we don't expect a matching } \\
\text { term in Faraday's law. }
\end{array}
\end{aligned}
$$

OK

Maxwell 1: Ampere correction

$$
\begin{aligned}
& \oint \bar{E} \cdot d \bar{A}=\frac{q_{\mathrm{enclosed}}}{\epsilon_{0}} \\
& \oint \bar{B} \cdot d \bar{A}=0
\end{aligned}
$$

Right-side of Ampere's law and Faraday's law are also not symmetric ...

Faraday's law: changing magnetic flux is a source of electric fields
.... should a changing electric
flux produce a magnetic field?
Is Ampere's law incomplete?

Maxwell 1: Ampere correction

Lecture 9: Ampere's Law for a steady current

Shape of surface not important
... what if the current is not steady?

Maxwell 1: Ampere correction

Brief aside: capacitors
2 conducting plates

$|\bar{E}|$ changes as plates charge
When battery is connected, charge moves top plate to bottom plate.

No charge moves between the plates.

An increasing electric flux is produced as the capacitor charges. $\Phi_{E}=|\bar{E}||\bar{A}| \cos \theta$

This 'stored charge' can be used later.

Maxwell 1: Ampere correction

Brief aside: capacitors
2 conducting plates

When battery is connected, charge moves top plate to bottom plate.

No charge moves between the plates.

An increasing electric flux is produced as the capacitor charges. $\Phi_{E}=|\bar{E}||\bar{A}| \cos \theta$

This 'stored charge' can be used later.

Maxwell 1: Ampere correction

Consider 3 surfaces:

$\oint \bar{B} \cdot d \bar{r}=\mu_{0} I_{\text {encircled }} \quad$ Ampere's Law
I through surface 1 and 3 is the same:

$$
\oint \bar{B} \cdot d \bar{r}=\mu_{0} I_{\text {encircled }}
$$

But there is no current through surface 2: $\oint \bar{B} \cdot d \bar{r}=\mu_{0} I_{\text {cincireled }}$

$$
=0 \quad \text { !! }
$$

Maxwell 1: Ampere correction

$$
\begin{aligned}
\oint \bar{B} \cdot d \bar{r} & =\mu_{0} I_{\text {ongiveled }} \\
& =0
\end{aligned}
$$

No current, but there is a changing electric flux, $\frac{d \Phi_{E}}{d t} \neq 0$ In 1860, Maxwell suggested this could produce a magnetic field:

$$
\oint \bar{B} \cdot d \bar{r}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}
$$

Ampere's Law with
Maxwell modification
Maxwell predicted this from symmetry with Faraday's equation:

$$
\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}
$$

.... but it has since been proved by experiment.

Maxwell 1: Ampere correction

$\oint \bar{B} \cdot d \bar{r}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}$
Named displacement current
(but a flux, not a current...)

This law is universal (not just capacitors):
ANY changing electric flux produces a magnetic field.

Likewise,
ANY changing magnetic flux produces an electric field
(Faraday's Law) $\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}$

Maxwell's equations

Law

Gauss for $\vec{E} \quad \oint \vec{E} \cdot d \vec{A}=\frac{q}{\epsilon_{0}}$
Gauss for $\vec{B} \quad \oint \vec{B} \cdot d \vec{A}=0$

Faraday

Ampère

Mathematical Statement

$$
\oint \vec{E} \cdot d \vec{A}=\frac{q}{\epsilon_{0}}
$$

$$
\oint \vec{B} \cdot \overrightarrow{A A}=0
$$

$$
\oint \vec{E} \cdot d \vec{r}=-\frac{d \Phi_{B}}{d t}
$$

$$
\oint \vec{B} \cdot d \vec{r}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}
$$

What It Says

How charges produce electric field; field lines begin and end on charges.

No magnetic charge; magnetic field lines don't begin or end.

Changing magnetic flux produces electric field.

Electric current and changing electric flux produce magnetic field.

Describe ALL electromagnetic phenomena

Maxwell's equations in a vacuum

To understand Maxwell's 2nd huge contribution, let's simplify the equations...

Gauss's Law for $\bar{E} \oint \bar{E} \cdot d \bar{A}=0$

Gauss's Law for $\bar{B} \quad \oint \bar{B} \cdot d \bar{A}=0$

Maxwell equations in a vacuum:
remove matter terms
(charge and current)

Only field source is change in other field.

Maxwell 2: Electromagnetic wave

We have seen electric and magnetic fields from charges, q , current, I and changing flux.

Maxwell asked:

Could a wave made from alternating electric and magnetic fields exist?

Maxwell 2: Electromagnetic wave

$\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}$
Faraday's Law
$\oint \bar{B} \cdot d \bar{r}=\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}$
Ampere's Law
$\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}$
Faraday's Law

Changing magnetic field induces an electric field

but then... the electric field changes

Changing electric field induces a magnetic field
but then... the magnetic field changes

Changing magnetic field induces an electric field

Maxwell 2: Electromagnetic wave

PHYSICS-ANIMATIONS.COM

Electromagnetic wave: each field induces the other

Maxwell 2: Electromagnetic wave

Can we test this?

Plan:
Choose 2 waves (E-field wave and B-field wave)

- shape and orientation

Show they are a solution to Maxwell's Equations
If true, electromagnetic waves can exist

Maxwell 2: Electromagnetic wave

Test waves

Plane wave: simplest type of electromagnetic wave.
(good approximation for realistic, spherical wave)
wavefronts are infinite planes

In a vacuum, \bar{E} field and \bar{B} field are perpendicular.

Also perpendicular to direction of propagation.
(transverse wave)

Maxwell 2: Electromagnetic wave

Planewaves:
Field lines on infinite sheets
On each sheet, value of field is the same.

Wave vectors
Field properties sinusoidally (sine wave) vary between sheets

Maxwell 2: Electromagnetic wave

- 2012 Persson Educaton. inc.

Maxwell 2: Electromagnetic wave

Last semester
Equation for a wave: $y(x, t)=(A) \sin (\hbar x-\omega t)$
amplitude wave number angular frequency
If waves travel in x-direction:

$$
\begin{aligned}
& \bar{E}(x, t)=E_{p} \sin (k x-\omega t) \hat{j} \\
& \bar{B}(x, t)=B_{p} \sin (k x-\omega t) \hat{k}
\end{aligned}
$$

Since we can make any wave by superposing (adding) sine waves, if these waves obey Maxwell's equations, more complex waves will too.

Maxwell 2: Electromagnetic wave

Gauss' Laws

Gauss's Law for $\bar{E} \quad \oint \bar{E} \cdot d \bar{A}=0$
Gauss's Law for $\bar{B} \quad \oint \bar{B} \cdot d \bar{A}=0$

Electric and magnetic flux through any closed surface $=0$

Plane waves extend forever in 2 directions.

They do not start or end.
So, flux is always zero.
$($ Net field line number through surface $=0$)

Maxwell 2: Electromagnetic wave

Faraday's law $\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}$

Loop parallel to \bar{E} field, perpendicular \bar{B} field.
$h \times d x$

$$
\begin{array}{r}
\oint \bar{E} \cdot d \bar{r}=-E h+0+(E+d E) h+0 \\
h \mid \underset{\rightarrow}{\underset{d}{x}} \quad h \uparrow \underset{~}{~ d x}
\end{array}
$$

$$
=h d E
$$

Maxwell 2: Electromagnetic wave

Faraday's law

$$
\oint \bar{E} \cdot d \bar{r}=-\frac{d \Phi_{B}}{d t}
$$

Magnetic field perpendicular to electric.

$$
\Phi_{B}=B A=B h d x
$$

$\frac{d \Phi_{B}}{d t}=h d x \frac{d B}{d t}$
Faraday's law: $h d E=-h d x \frac{d B}{d t}$
rate of change of E-field with position

$$
\frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t} \leftarrow
$$

rate of change of B -field with time

Maxwell 2: Electromagnetic wave

Ampere's law $\oint \bar{B} \cdot d \bar{r}=\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}$

Loop parallel to \bar{B} field, perpendicular \bar{E} field.

$$
\oint \bar{B} \cdot d \bar{r}=B h+0-(B+d B) h+0
$$

$$
h \downarrow \xrightarrow[\rightarrow]{d x}
$$

$$
\frac{d \Phi_{E}}{d t}=h d x\left(\frac{d E}{d t}\right)
$$

rate of change of B -field with position

$$
\rightarrow \frac{\partial B}{\partial x}=-\epsilon_{0} \mu_{0} \frac{\partial E}{\partial t}
$$

rate of change of E-field with time

Maxwell 2: Electromagnetic wave

$$
\begin{aligned}
& \frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t} \\
& \frac{\partial B}{\partial x}=-\epsilon_{0} \mu_{0} \frac{\partial E}{\partial t}
\end{aligned}
$$

If our wave equations worl
Change in one field induces the other field

$$
\begin{aligned}
& \bar{E}(x, t)=E_{p} \sin (k x-\omega t) \hat{j} \\
& \bar{B}(x, t)=B_{p} \sin (k x-\omega t) \hat{k}
\end{aligned}
$$

try them
then an electromagnetic wave IS a solution to Maxwell's equations and our configuration is possible.

Maxwell 2: Electromagnetic wave

Ist equation: $\quad \frac{\partial E}{\partial x}=-\frac{\partial B}{\partial t}$
$\frac{\partial E}{\partial x}=\frac{\partial}{\partial x}\left[E_{p} \sin (k x-\omega t)\right]=k E_{p} \cos (k x-w t)$
and
$\frac{\partial B}{\partial t}=\frac{\partial}{\partial t}\left[B_{p} \sin (k x-\omega t)\right]=-\omega B_{p} \cos (k x-w t)$

Therefore: $\quad k E_{p} \cos (k x-\omega t)=-\left[-\omega B_{p} \cos (k x-\omega t)\right]$
True if $\quad k E_{p}=\omega B_{p}$

Maxwell 2: Electromagnetic wave

2nd equation: $\frac{\partial B}{\partial x}=-\epsilon_{0} \mu_{0} \frac{\partial E}{\partial t}$
$\frac{\partial B}{\partial x}=k B_{p} \cos (k x-\omega t)$
and
$\frac{\partial E}{\partial t}=-\omega E_{p} \cos (k x-\omega t)$

Therefore: $k B_{p} \cos (k x-\omega t)=-\epsilon_{0} \mu_{0}\left[-\omega E_{p} \cos (k x-\omega t)\right]$
True if $k B_{p}=\epsilon_{0} \mu_{0} \omega E_{p}$

Maxwell 2: Electromagnetic wave

The waves:

$$
\begin{aligned}
& \bar{E}(x, t)=E_{p} \sin (k x-\omega t) \hat{j} \\
& \bar{B}(x, t)=B_{p} \sin (k x-\omega t) \hat{k}
\end{aligned}
$$

where

$$
\begin{aligned}
& k E_{p}=\omega B_{p} \\
& k B_{p}=\epsilon_{0} \mu_{0} \omega E_{p}
\end{aligned}
$$

are solutions to Maxwell's equations!
This shows electromagnetic waves are possible....
... but what are their properties?

Electromagnetic wave properties

Wave speed

Last semester: \quad wave speed $=\frac{\omega}{k}$
From $k E_{p}=\omega B_{p} \longrightarrow E_{p}=\frac{\omega B_{P}}{k}$
Put in $k B_{p}=\epsilon_{0} \mu_{0} \omega E_{p}=\frac{\epsilon_{0} \mu_{0} \omega^{2} B_{P}}{k}$
Therefore wave speed $=\frac{\omega}{k}=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}$
EM wave speed in a vacuum

$$
\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=\frac{1}{\sqrt{\left.8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}\right)\left(4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)}}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Electromagnetic wave properties

$\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=\underbrace{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}_{\uparrow} \quad$ WAIT!!
speed of light
... and light is a wave....
Therefore: light is an electromagnetic wave!
$\frac{\omega}{k}=c \quad E M$ wave speed in a vacuum
since $\omega=2 \pi f$ and $k=2 \pi / \lambda: \quad f \lambda=c$

Electromagnetic wave properties

Wave amplitude
From $\frac{\omega}{k}=c$ and $k E_{p}=\omega B_{p}$

$$
E=\frac{\omega}{k} B=c B
$$

Phase and orientation
\bar{E} and \bar{B} in phase in time
\bar{E} and \bar{B} perpendicular in space and to propagation direction.

Propagation direction: $\bar{E} \times \bar{B}$

EM wave properties

At a point, the electric field of an electromagnetic wave points in the +y direction, while the magnetic field points in the -z direction.

(A) $+x$
(D) -y
(B) $-x$
(E) $+z$
(C) either $+x$ or $-x$, cannot
(F) not along coordinate
axes

EM wave properties

At a point, the electric field of an electromagnetic wave points in the +y direction, while the magnetic field points in the $-\mathbf{z}$ direction.

(B) $-x$

Propagation direction: $\bar{E} \times \bar{B}$

Polarisation

Polarisation specifies the direction of the \bar{E} field.

\bar{E} and \bar{B} are always perpendicular, but there is still a choice in their orientation.

Polarisation

EM waves from antennaes (e.g for TV / radio) are polarised.

EM waves from the sun or a light bulb are unpolarised; mix of orientations

Unpolarised light can become polarised by reflecting

... or passing through....
substances whose structure has a preferred direction.

These are polarising materials.

Polarisation

A polarising material has a transmission axis.
Only the component of the E-field aligned with the transmission axis $(E \cos \theta)$ can pass through.

Polarisation

Law of Malus:

Electromagnetic waves are blocked completely if the transmission axis is perpendicular to the waves polarisation.

2 pieces of polarising material with transmission axes at right angles block all light.

Polarisation

Unpolarised light shines on a pair of polarisers with perpendicular transmission axes.

A 3rd polariser is placed between them with a transmission axis at 45 degrees to the others.

What happens to the light?
(A) nothing will change
(B) transmitted light with decrease
(C) transmitted light with increase
(D) transmitted light will be zero

Polarisation

Unpolarised light: Mix of directions $\cos ^{2} \theta$ between $0 \rightarrow 1$ average $<\cos ^{2} \theta>=\frac{1}{2}$
After Ist filter: $S=\frac{1}{2} S_{0} \quad$ polarisation \uparrow

After 2nd filter: $\cos ^{2} \theta=\cos ^{2} 90=0.0$

$$
S=0
$$

Polarisation

After Ist filter: $\quad S_{1}=\frac{1}{2} S_{0} \quad$ polarisation \uparrow
After 2nd filter: $\cos ^{2} \theta=\cos ^{2} 45=\left(\frac{1}{\sqrt{2}}\right)^{2}$

$$
S_{2}=\frac{1}{2} \frac{1}{2} S_{0}
$$

$\begin{array}{ll}\text { After 3rd filter: } & \cos ^{2} \theta=\cos ^{2} 45=\left(\frac{1}{\sqrt{2}}\right)^{2} \\ & S_{3}=\frac{1}{2} \frac{1}{2} \frac{1}{2} S_{0}=\frac{1}{8} S_{0}\end{array}$

Polarisation

Polarisation

Polarised light is incident on a sheet of polarising material. 20% of the light passes through.

What is the angle between the electric field and transmission axis?
(A) 12°
(B) 90°

$$
\frac{S}{S_{0}}=\cos ^{2} \theta=0.2
$$

$$
\theta=\cos ^{-1}(\sqrt{0.2})
$$

(C) 45°
(D) 63°

Electromagnetic spectrum

EM waves have a large range of frequencies and wavelengths.
Visible light is only a small part of the spectrum!

Electromagnetic spectrum Quiz

A 60 Hz power line emits electromagnetic radiation. What is the wavelength?
(A) $1.2 \times 10^{7} \mathrm{~m}$
(B) $5 \times 10^{6} \mathrm{~m}$
(C) $1.2 \times 10^{9} \mathrm{~m}$
(D) $5 \times 10^{5} \mathrm{~m}$

$$
\lambda=\frac{c}{f}=\frac{3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}}{60 \mathrm{~Hz}}
$$

$c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Electromagnetic waves

Which of the following does NOT result in emissions of an EM wave?
(A) A charged particle moving in a circle at constant speed
(B) A charged particle moving in a straight line at constant speed
(C) A stationary solid sphere with its total charge, Q , changing in time

Electromagnetic waves

Why does a charged particle moving in a circle at constant speed create EM radiation?

(A) The charge's speed is not constant and this causes a changing field
(B) The charge is accelerating. Accelerating charges cause a changing field
(C) There must be a magnet in the circle centre and this creates an EM wave.
(D) Christmas magic.

Electromagnetic waves

Quiz
So.....

Does an atom (and electron moving around a proton) create an electromagnetic wave?
(A) Yes

Next lecture.....
(B) No

