Essential Physics I

$$
\begin{gathered}
\text { 英語で物理学の } \\
\text { エッセンス }
\end{gathered}
$$

Lecture 8：06－06－I6

News

No lecture next week！

©

13／6／2016

6月13日
BUT！

There IS a lecture

6／20／2016
 6月20日
 AND

6／23／2016
6月23日
＠18：00

News

AND

There IS a lecture

4/7/2016
 7月4日

2016								JULY
SUN	MON	TUE	WED	THU	FRI	SAT		
					1	2		
3	S.	5	6	7	8	9		
10	11	12	13	14	15	16		
17	18	19	20	21	22	23		
24	25	26	27	28	29	30		
31								

Last lecture: review

Potential energy:
Gravity: Spring: $\quad U=\frac{1}{2} k x^{2}$
= stored energy we can get back as kinetic energy

$$
\Delta U \rightarrow K
$$

If a force stores energy to give back later, it is conservative: total work around a closed path (start = end) is 0

$$
\oint \bar{F} \cdot d \bar{r}=0
$$

Last lecture: review

A block of mass m starts from rest $\left(v_{i}=0\right)$ on a ramp at height, h . It slides down the ramp and reaches a speed, v .

What height is needed to reached the speed 2 v ?
(a) h
(d) 3 h
(b) 1.4 Ih
(e) 4 h
(c) 2 h
(f) 6 h

Last lecture: review

A block of mass m starts from rest $\left(v_{i}=0\right)$ on a ramp at height, h .
It slides down the ramp and reaches a speed, v .
What height is needed to reached the speed 2 v ?

Energy conservation: $\Delta U_{\text {top }}=K_{\text {bottom }}$

$$
\left.\begin{array}{rl}
m g h=\frac{1}{2} m v^{2} \longrightarrow h_{1} & =\frac{1}{2} \frac{v_{1}^{2}}{g} \\
h_{2} & =\frac{1}{2} \frac{\left(2 v_{1}\right)^{2}}{g}
\end{array}\right) \quad \frac{h_{1}}{h_{2}}=\frac{1}{4} \longrightarrow h_{2}=4 h_{1}
$$

Last lecture: review

3 balls of equal mass are fired at equal speeds from the same height. Ball 1 is fired up, ball 2 down and ball 3 horizontally.

Rank their speeds from big to small before they hit the ground. (ignore friction / drag)

(a) $\quad v_{1}>v_{2}>v_{3}$
(b) $v_{3}>v_{2}>v_{1}$
(c) $v_{1}=v_{2}=v_{3}$
(d) $v_{2}>v_{1}>v_{3}$
(e) $\quad v_{1}=v_{2}>v_{3}$

Last lecture: review

3 balls of equal mass are fired at equal speeds from the same height.
Ball 1 is fired up, ball 2 down and ball 3 horizontally.
Rank their speeds from big to small before they hit the ground.
Initial energy, ball 1:

Path doesn't matter.

Last lecture: review

A spring-loaded gun shoots a ball with speed $4 \mathrm{~m} / \mathrm{s}$.
If the spring is compressed twice as far, the ball's speed will be....

Last lecture: review

A spring-loaded gun shoots a ball with speed $4 \mathrm{~m} / \mathrm{s}$.
If the spring is compressed twice as far, the ball's speed will be....

$$
\text { Energy conservation: } \begin{aligned}
U_{\text {spring }} & =K_{\text {ball }} \\
\frac{1}{2} k x^{2} & =\frac{1}{2} m v_{1}^{2} \\
\frac{1}{2} k(2 x)^{2} & =\frac{1}{2} m v_{2}^{2} \\
\left(\frac{v_{1}}{v_{2}}\right)^{2} & =\frac{1}{4} \\
v_{2}=v_{1} \times 2=4 \times 2 & =8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

This lecture:

Momentum

Momentum

In lecture 4:
Newton's 2nd law: $\bar{F}_{\text {net }}=\frac{d \bar{p}}{d t}=m \bar{a}$
where the momentum, $\bar{p}=m \bar{v}$
"If there is no net external force on a system, the total momentum is constant"

$$
\begin{aligned}
\overline{v_{b}} & =700 \mathrm{~m} / \mathrm{s} \\
m_{b} & =35 \mathrm{~g}
\end{aligned}
$$

A gun fires a bullet into butter.
The bullet travels through the butter, slows and pushes the butter to the right on a frictionless surface.

What is the final speed of the bullet?

Momentum

Total momentum before:
$\bar{p}_{\text {before }}==m \bar{v}-m_{b} \bar{v}_{b}$
butter bullet

Momentum

Total momentum before:
$\bar{p}_{\text {before }}=m \bar{v}+m_{b} \bar{v}_{b}$
$=(7 \mathrm{~kg})(0)+(0.035 \mathrm{~kg})(700 \mathrm{~m} / \mathrm{s})$
$=24.5 \mathrm{kgm} / \mathrm{s}$

$$
\begin{aligned}
\overline{v_{b}} & =700 \mathrm{~m} / \mathrm{s} \\
m_{b} & =35 \mathrm{~g}
\end{aligned}
$$

Total momentum after:

$$
\bar{p}_{\text {after }}=(7 \mathrm{~kg})(0.04 \mathrm{~m} / \mathrm{s})+(0.035 \mathrm{~kg}) \bar{v}_{b}
$$

$$
=0.28+0.035 v_{b}
$$

$$
\bar{v}_{b}=?
$$

$$
\bar{v}=4 \mathrm{~cm} / \mathrm{s}
$$

$$
\bar{p}_{\text {before }}=\bar{p}_{\text {after }} \rightarrow 24.5=0.28+0.035 v_{b}
$$

$$
v_{b}=692 \mathrm{~m} / \mathrm{s}
$$

Momentum

7 kg

$$
\bar{v}=0
$$

$$
\begin{aligned}
\overline{v_{b}} & =700 \mathrm{~m} / \mathrm{s} \\
m_{b} & =35 \mathrm{~g}
\end{aligned}
$$

Same problem, but butter is now wood.
The bullet stops in the wood and they move together on a frictionless surface.

$$
\bar{v}_{\text {tot }}=? \longleftarrow
$$

(a) $3.48 \mathrm{~m} / \mathrm{s}$
(b) $4 \mathrm{~cm} / \mathrm{s}$
(c) $700 \mathrm{~m} / \mathrm{s}$
(d) $3.5 \mathrm{~m} / \mathrm{s}$

Momentum

7 kg

$$
\bar{v}=0
$$

$$
\begin{aligned}
\overline{v_{b}} & =700 \mathrm{~m} / \mathrm{s} \\
m_{b} & =35 \mathrm{~g}
\end{aligned}
$$

0
$\bar{p}_{\text {before }}=m_{\mathrm{b}} \bar{v}_{b}+m_{\text {butter }} \bar{v}_{\text {Dutter }}=m_{\mathrm{b}} \bar{v}_{\mathrm{b}}$

$$
=(0.035 \mathrm{~kg}) \times(700 \mathrm{~m} / \mathrm{s})
$$

$\bar{p}_{\text {after }}=m_{\text {tot }} \bar{v}_{\text {tot }}=(7 \mathrm{~kg}+0.035 \mathrm{~kg}) \bar{v}_{\text {tot }}$

$$
v_{\mathrm{tot}}=\frac{24.5}{7.035}=3.48 \mathrm{~m} / \mathrm{s}
$$

Momentum

A popcorn kernal at rest in a hot pan bursts into two pieces, with masses $91-\mathrm{mg}$ and 64-mg.

The more massive piece moves horizontally at $47 \mathrm{~cm} / \mathrm{s}$. What is the velocity of the 2 nd piece?
(a) $33 \mathrm{~cm} / \mathrm{s}$
(b) $67 \mathrm{~cm} / \mathrm{s}$
(c) $-67 \mathrm{~cm} / \mathrm{s}$
(d) $-33 \mathrm{~cm} / \mathrm{s}$

Momentum

A popcorn kernal at rest in a hot pan bursts into two pieces, with masses $91-\mathrm{mg}$ and 64-mg.

The more massive piece moves horizontally at $47 \mathrm{~cm} / \mathrm{s}$. What is the velocity of the 2nd piece?

$$
\begin{aligned}
\bar{p}_{\text {before }} & =m_{\text {tot }} \bar{v}_{\text {tot }} \\
& =(91 \mathrm{mg}+64 \mathrm{mg}) \times 0 \\
\bar{p}_{\text {after }} & =m_{1} \bar{v}_{1}+m_{2} \bar{v}_{2} \\
& =(91 \mathrm{mg})(47 \mathrm{~cm} / \mathrm{s})+(64 \mathrm{mg}) \bar{v}_{2} \\
\bar{v}_{2} & =-\frac{(91 \mathrm{mg})(47 \mathrm{~cm} / \mathrm{s})}{64 \mathrm{mg}}=-67 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Why does this work?
What about the other forces in the system?

Because of Newton's 3rd law, internal forces are equal and opposite.
Therefore, the change in momentum is equal and opposite.
So $\Delta p=0$ and momentum is conserved (if no external forces)

Momentum

An apple is dropped from a height. After t seconds, its velocity is v . Which of the following is true?
(a) the apple's momentum is conserved
(b) the Earth's momentum is conserved
(c) the apple + the Earth's momentum is conserved
(d) all the above

Momentum

An apple is dropped from a height. After t seconds, its velocity is v . Which of the following is true?
(a) the apple's mowention is conserved

$$
\begin{aligned}
& \text { initial } \\
& \bar{p}_{\text {apple }, \mathrm{i}}=0.0 \\
& \bar{p}_{\text {apple }, \mathrm{i}} \neq \bar{p}_{\text {apple }, \mathrm{f}}
\end{aligned}
$$

final
$\bar{p}_{\text {apple }, \mathrm{f}}=m v$

Gravity is an external force on the apple.
Therefore, the apple's momentum alone is not conserved.

Momentum

An apple is dropped from a height. After t seconds, its velocity is v . Which of the following is true?
(b) the Earth's moricnuilm is conserved

From Newton's 3rd law, the apple also exerts a force on the Earth,
causing a (tiny!) velocity change.
Therefore:
$\bar{p}_{\text {Earth }, \mathrm{i}} \neq \bar{p}_{\text {Earth }, \mathrm{f}}$

The Earth's momentum alone is not conserved.

Momentum

An apple is dropped from a height. After t seconds, its velocity is v . Which of the following is true?
(c) the apple + the Earth's momentum is conserved

If our system includes both Earth and apple, gravity is an internal force.

$$
\begin{aligned}
\bar{p}_{\text {total }} & =M_{\text {Earth }} v_{\text {Earth }}+m_{\text {apple }} v_{\text {apple }} \\
& =0 \\
\bar{p}_{\text {total }, \mathrm{i}} & =\bar{p}_{\text {total }, \mathrm{f}}
\end{aligned}
$$

Momentum is a vector: \bar{p}
\bar{v} and \bar{p} point in the same direction.
SI unit: kgm/s
Momentum is conserved (like energy) if there is no external force
A net force ($\bar{F}_{\text {net }} \neq 0$) is required to change a body's momentum Momentum is proportional to mass and velocity: $\bar{p}=m \bar{v}$

Therefore, a big and slow object can have the same momentum as a small and fast object

Momentum

Equivalent momentum:
Car: $m=1800 \mathrm{~kg} ; \quad v=80 \mathrm{~m} / \mathrm{s}$

$$
p=1.44 \cdot 10^{5} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

Bus: $m=9000 \mathrm{~kg} ; \quad v=16 \mathrm{~m} / \mathrm{s}$

$$
p=1.44 \cdot 10^{5} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

Train: $m=3.6 \cdot 10^{4} \mathrm{~kg} ; \quad v=4 \mathrm{~m} / \mathrm{s}$

$$
p=1.44 \cdot 10^{5} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

The same force would be needed to stop all three. $\quad \bar{F}_{\text {net }}=\frac{d \bar{p}}{d t}$

Momentum

Since \bar{p} is a vector, 2D problems can be solved with components:

Example:

A 60-kg skater, at rest on a frictionless ice, tosses a $12-\mathrm{kg}$ snowball with velocity $\bar{v}=53.0 \bar{i}+14.0 \bar{j} \mathrm{~m} / \mathrm{s}$. Find the skater's velocity.
$\bar{p}_{\mathrm{i}}=0.0$

Momentum

Since \bar{p} is a vector, 2D problems can be solved with components:

Example:

A 60-kg skater, at rest on a frictionless ice, tosses a $12-\mathrm{kg}$ snowball with velocity $\bar{v}=53.0 \bar{i}+14.0 \bar{j} \mathrm{~m} / \mathrm{s}$. Find the skater's velocity.
$\bar{p}_{\mathrm{i}}=0.0 \quad \bar{p}_{\mathrm{f}}=m_{1} \bar{v}_{1}+m_{2} \bar{v}_{2}$
Conservation of momentum:

$$
\bar{v}_{2}=-\frac{m_{1}}{m_{2}} \bar{v}_{1}
$$

$\left.\mathrm{i}: \quad v_{2, i}=-\frac{m_{1}}{m_{2}} v_{1, \mathrm{i}}=-\frac{12 \mathrm{~kg}}{60 \mathrm{~kg}} 53.0 \overline{\mathrm{i}} \mathrm{m} / \mathrm{s}\right)$

Momentum

Since \bar{p} is a vector, 2D problems can be solved with components:

Example:

A 60-kg skater, at rest on a frictionless ice, tosses a $12-\mathrm{kg}$ snowball with velocity $\bar{v}=53.0 \bar{i}+14.0 \bar{j} \mathrm{~m} / \mathrm{s}$. Find the skater's velocity.
$\bar{p}_{\mathrm{i}}=0.0 \quad \bar{p}_{\mathrm{f}}=m_{1} \bar{v}_{1}+m_{2}$
Conservation of momentum:
i: $\quad v_{2, i}=-\frac{m_{1}}{m_{2}} v_{1, \mathrm{i}}=-\frac{12 \mathrm{~kg}}{60 \mathrm{~kg}}(530 \bar{i} \mathrm{~m} / \mathrm{s})$
j: $\quad v_{2, j}=-\frac{m_{1}}{m_{2}} v_{1, j}=-\frac{12 \mathrm{~kg}}{60 \mathrm{~kg}} 14.0 \bar{j} \mathrm{~m} / \mathrm{s}$

Momentum

Since \bar{p} is a vector, 2D problems can be solved with components:

Example:

A 60-kg skater, at rest on a frictionless ice, tosses a $12-\mathrm{kg}$ snowball with velocity $\bar{v}=53.0 \bar{i}+14.0 \bar{j} \mathrm{~m} / \mathrm{s}$. Find the skater's velocity.

$$
\bar{p}_{\mathrm{i}}=0.0 \quad \bar{p}_{\mathrm{f}}=m_{1} \bar{v}_{1}+m_{2} \bar{v}_{2}
$$

Conservation of momentum:

Collisions

Collisions

Three types of collisions:
(I) Elastic

K and p are conserved. Nothing sticks together.
$\mathrm{p}: \quad m_{1} \bar{v}_{1, i}+m_{2} \bar{v}_{2, i}=m_{1} \bar{v}_{1, f}+m_{2} \bar{v}_{2, f}$
K: $\quad \frac{1}{2} m_{1} v_{1, i}^{2}+\frac{1}{2} m_{2} v_{2, i}^{2}=\frac{1}{2} m_{1} v_{1, f}^{2}+\frac{1}{2} m_{2} v_{2, f}^{2}$

(2) Inelastic

Only p is conserved. Nothing sticks together.

$$
\mathbf{p}: m_{1} \bar{v}_{1, i}+m_{2} \bar{v}_{2, i}=m_{1} \bar{v}_{1, f}+m_{2} \bar{v}_{2, f}
$$

(3) Totally inelastic

Only p is conserved. Objects sticks together.

$$
\text { p: } m_{1} \bar{v}_{1}+m_{2} \bar{v}_{2}=\left(m_{1}+m_{2}\right) \bar{v}_{f}
$$

Collisions

In real life, most collisions are:
(a) Elastic
(K and p are conserved)
(b) Inelastic
(p is conserved)

Collisions

Totally inelastic: ID

Conservation of momentum:
$m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v_{3}$

Collisions

Inelastic collision ID:

Initial speed of the
left hand cart =1.0

Initial speed of the
right hand cart $=0.0$

2 carts on frictionless track collide and stick together.
what is their combined velocity v_{f} ?

Collisions

Quiz
Inelastic collision ID:

what is their combined velocity v_{f} ?

Collisions

Quiz

Inelastic collision ID:

Initial speed of the
left hand cart = 1.0

Initial speed of the
right hand cart $=0.0$

what is their combined velocity v_{f} ?
(a) 0.588
(b) 1.0
(c) 1.43
(d) 0.5

Collisions

Quiz

Inelastic collision ID:

Initial speed of the
left hand cart $=1.0$

Initial speed of the
right hand cart $=0.0$
what is their combined velocity v_{f} ?

$$
\bar{p}_{\text {before }}=m_{L} \bar{v}_{L}+m_{R} \bar{v}_{R}=1 \times 1+0.7 \times 0
$$

$$
\bar{p}_{\text {before }}=\bar{p}_{\text {after }}
$$

$$
\bar{p}_{\text {after }}=m_{\text {tot }} \bar{v}_{\text {tot }}=1.7 \times \bar{v}_{\text {tot }}
$$

$$
\bar{v}_{\text {tot }}=\frac{1}{1.7}=0.588
$$

Collisions

$$
\begin{aligned}
& p_{x}=m v_{x}=m v \cos \theta \\
& p_{y}=m v_{y}=m v \sin \theta
\end{aligned}
$$

Collisions

Collisions

Collisions

Collisions

Collisions

Collisions

Inelastic:
2D
before:

after:

$$
p_{x}=p_{1, x, i}+p_{2, x, i}
$$

$$
=m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i}
$$

$$
\begin{aligned}
p_{y} & =p_{1, y, i}+p_{2, y, i} \\
& =m_{1} v_{1, i} \sin \theta_{1, i}+m_{2} v_{2, i} \sin \theta_{2, i}
\end{aligned}
$$

$p_{x}=-m_{3} v_{f} \cos \theta_{f}$

$$
p_{y}=m_{3} v_{f} \sin \theta_{f}
$$

Collisions

before:

after:

Conservation of momentum:

$$
\begin{aligned}
p_{x} & =m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i} \\
p_{y} & =m_{1} v_{1, i} \sin \theta_{1, i}+m_{2} v_{2, i} \sin \theta_{2, i}
\end{aligned}
$$

$$
\begin{aligned}
p_{x} & =-m_{3} v_{f} \cos \theta_{f} \\
& =-\left(m_{1}+m_{2}\right) v_{f} \cos \theta_{f} \\
p_{y} & =m_{3} v_{f} \sin \theta_{f} \\
& =\left(m_{1}+m_{2}\right) v_{f} \sin \theta_{f}
\end{aligned}
$$

$\mathrm{y}: \quad p_{y, \text { initial }}=p_{y, \text { final }}$

Collisions

before:

Conservation of momentum:

$m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i}=-\left(m_{1}+m_{2}\right) v_{f} \cos \theta_{f}$

Collisions

before:

after:

Conservation of momentum:
$p_{x}=m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i}$
$p_{y}=m_{1} v_{1, i} \sin \theta_{1, i}+m_{2} v_{2, i} \sin \theta_{2, i}$
$p_{x}=-m_{3} v_{f} \cos \theta_{f}$
$=-\left(m_{1}+m_{2}\right) v_{f} \cos \theta_{f}$
$p_{y}=m_{3} v_{f} \sin \theta_{f}$
$=\left(m_{1}+m_{2}\right) v_{f} \sin \theta_{f}$
$m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i}=-\left(m_{1}+m_{2}\right) v_{f} \cos \theta_{f}$ $m_{1} v_{1, i} \sin \theta_{1, i}+m_{2} v_{2, i} \sin \theta_{2, i}=\left(m_{1}+m_{2}\right) v_{f} \sin \theta_{f}$

Collisions

A neutron (mass I u) strikes a deutron (mass 2 u) and they combine to form a tritium nucleus.

If the neutron's initial velocity was $28 \bar{i}+17 \bar{j} \mathrm{Mm} / \mathrm{s}$ and the tritium's final velocity is $12 \bar{i}+20 \bar{j} \mathrm{Mm} / \mathrm{s}$ what is the deutron's velocity?
(a) $40 \bar{i}-37 \bar{j} \mathrm{Mm} / \mathrm{s}$
(b) $32 \bar{i}+38.5 \bar{j} \mathrm{Mm} / \mathrm{s}$

$$
28 \bar{i}+17 \bar{j} \mathrm{Mm} / \mathrm{s}
$$

(c) $16 \bar{i}-3 \bar{j} \mathrm{Mm} / \mathrm{s}$
(d) $4 \bar{i}+21.5 \bar{j} \mathrm{Mm} / \mathrm{s}$

Collisions

Just for interest:

Atomic mass unit: $1 u=1.67 \times 10^{-27} \mathrm{~kg}$
$\bar{p}_{\text {before }}=m_{n} \bar{v}_{n}+m_{d} \bar{v}_{d}$

$$
\bar{p}_{\text {before }}=\bar{p}_{\text {after }}
$$

$$
\bar{p}_{\text {after }}=m_{t} \bar{v}_{t}
$$

$$
\bar{v}_{d}=\frac{m_{t} \bar{v}_{t}-m_{n} \bar{v}_{n}}{m_{d}}
$$

$\mathrm{x}: \quad \bar{v}_{d, x}=\frac{(3 u \times 12)-(u \times 28)}{2 u}=4 \mathrm{Mm} / \mathrm{s}$
$\mathbf{y}: \quad \bar{v}_{d, y}=\frac{(3 u \times 20)-(u \times 17)}{2 u}=21.5 \mathrm{Mm} / \mathrm{s}$

Collisions

Just for interest:

Atomic mass unit: $1 u=1.67 \times 10^{-27} \mathrm{~kg}$
$\bar{p}_{\text {before }}=m_{n} \bar{v}_{n}+m_{d} \bar{v}_{d}$

$$
\bar{p}_{\text {atter }}=m_{t} \bar{v}_{t}
$$

$$
\bar{v}_{d}=\frac{m_{t} \bar{v}_{t}-m_{n} \bar{v}_{n}}{m_{d}}
$$

$$
=\frac{3 u(12 \hat{i}+20 \hat{j})-u(28 \hat{i}+17 \hat{j})}{2 u}=4 \bar{i}+21.5 \bar{j} \mathrm{Mm} / \mathrm{s}
$$

$12 \bar{i}+20 \bar{j} \mathrm{Mm} / \mathrm{s}$

Collisions

Elastic: ID

Conservation of momentum, p:
$m_{1} v_{1, i}+m_{2} v_{2, i}=m_{1} v_{1, f}+m_{2} v_{2, f}$
Conservation of kinetic energy, K:
$\frac{1}{2} m_{1} v_{1, i}^{2}+\frac{1}{2} m_{2} v_{2, i}^{2}=\frac{1}{2} m_{1} v_{1, f}^{2}+\frac{1}{2} m_{2} v_{2, f}^{2}$

Collisions

Elastic collision ID:

Initial speed of the
left hand cart $=1.0$

Initial speed of the right hand cart $=0.0$

- $) 7$

2 carts on frictionless track collide in an elastic collision

find: v_{1} and v_{2}

Collisions

Elastic collision ID:

find: V_{1} and V_{2}

Collisions

Elastic collision ID:

Initial speed of the
left hand cart $=1.0$

Initial speed of the right hand cart $=0.0$

find: V_{1} and V_{2}
(a) $0.18 \& 1.18$
(b) $0.0 \& 1.0$
(c) $0.51 \& 0.11$
(d) $0.5 \&-0.5$

Collisions

Elastic collision ID: find: V_{1} and V_{2}

Initial speed of the
left hand cart $=1.0$

Initial speed of the right hand cart $=0.0$

$$
\begin{aligned}
\bar{p}_{\text {before }} & =m_{L} \bar{v}_{L, 1}+m_{R} \bar{v}_{R, 1}=1 \times 1+0.7 \times 0 \\
\bar{p}_{\text {after }} & =m_{L} \bar{v}_{L, 2}+m_{R} \bar{v}_{R, 2}=1 \times \bar{v}_{L, 2}+0.7 \times \bar{v}_{\mathrm{R}, 2}
\end{aligned}
$$

$$
K_{\text {before }}=\frac{1}{2} m_{L} \bar{v}_{L, 1}^{2}+\frac{1}{2} m_{R} \bar{v}_{R, 1}^{2}=\frac{1}{2} \times 1 \times 1^{2}+0
$$

$$
K_{\text {after }}=\frac{1}{2} m_{L} \bar{v}_{L, 2}^{2}+\frac{1}{2} m_{R} \bar{v}_{R, 2}^{2}=\frac{1}{2} 1 \bar{v}_{L, 2}^{2}+\frac{1}{2} 0.7 \bar{v}_{R, 2}^{2}
$$

Collisions

Elastic collision ID: find: v_{1} and v_{2}

$\bar{p}_{\text {before }}=\bar{p}_{\text {after }}$

$$
1=\bar{v}_{L, 2}+0.7 \bar{v}_{R, 2} \longrightarrow \bar{v}_{L, 2}=1-0.7 \bar{v}_{R, 2}
$$

$K_{\text {before }}=K_{\text {after }}$

$$
\frac{1}{2}=\frac{1}{2} \bar{v}_{\mathrm{L}, 2}^{2}+\frac{1}{2} 0.7 \bar{v}_{R, 2}^{2} \quad \longrightarrow \quad 1=\bar{v}_{L, 2}^{2}+0.7 \bar{v}_{R, 2}^{2}
$$

Collisions

Elastic collision ID: find: v_{1} and v_{2}

Initial speed of the
left hand cart $=1.0$

Initial speed of the right hand cart $=0.0$

Combining:

$$
\begin{aligned}
& 1=\left(1-0.7 \bar{v}_{R, 2}\right)^{2}+0.7 \bar{v}_{R, 2}^{2} \\
&=1-1.4 \bar{v}_{R, 2}+0.49 \bar{v}_{\mathrm{R}, 2}^{2}+0.7 \bar{v}_{\mathrm{R}, 2}^{2} \\
& 0=\bar{v}_{R, 2}\left(1.19 \bar{v}_{R, 2}-1.4\right)
\end{aligned} \quad \bar{v}_{L, 2}=1-0.7 \bar{v}_{R, 2}
$$

($0, \mathrm{I}=$ initial conditions)

Collisions

Elastic:

2D
before:

after:

$$
p_{x}=-m_{1} v_{1, f} \cos \theta_{1, f}+m_{2} v_{2, f} \cos \theta_{2, f}
$$

Conservation of momentum:

$$
\begin{aligned}
p_{x} & =m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i} \\
p_{y} & =m_{1} v_{1, i} \sin \theta_{1, i}+m_{2} v_{2, i} \sin \theta_{2, i}
\end{aligned}
$$

$$
\bar{p}_{2, f} \quad p_{y}=m_{1} v_{1, f} \sin \theta_{1, f}+m_{2} v_{2, f} \sin \theta_{2, f}
$$

Collisions

Elastic:

before:

Conservation of momentum:

$\underset{\theta_{1, i}}{\bar{p}_{1, i}}$

$$
\left.\theta_{2, i} \bar{p}_{2, i} / p_{x}=m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i}\right)
$$

after:

Collisions

Elastic:

2D

before:

Conservation of momentum:

$$
p_{x}=m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i}
$$

after:

$$
\theta_{1, i} \quad-\bar{p}_{2, i}
$$

$$
p_{y}=m_{1} v_{1, i} \sin \theta_{1, i}+m_{2} v_{2, i} \sin \theta_{2, i}
$$

$m_{1} v_{1, i} \cos \theta_{1, i}-m_{2} v_{2, i} \cos \theta_{2, i}=$

$$
-m_{1} v_{1, f} \cos \theta_{1, f}+m_{2} v_{2, f} \cos \theta_{2, f}
$$

$$
m_{1} v_{1, i} \sin \theta_{1, i}+m_{2} v_{2, i} \sin \theta_{2, i}=m_{1} v_{1, f} \sin \theta_{1, f}+m_{2} v_{2, f} \sin \theta_{2, f}
$$

Collisions

Elastic:

2D
before:

Conservation of kinetic energy:

$$
\frac{1}{2} m_{1} v_{1, i}^{2}+\frac{1}{2} m_{2} v_{2, i}^{2}
$$

after:

$\frac{1}{2} m_{1} v_{1, i}^{2}+\frac{1}{2} m_{2} v_{2, i}^{2}=\frac{1}{2} m_{1} v_{1, f}^{2}+\frac{1}{2} m_{2} v_{2, f}^{2}$

Collisions

Example

In a pool game, the cue ball, with an initial speed of $5 \mathrm{~m} / \mathrm{s}$, makes and elastic collision with the 8 -ball, which is initially at rest.

After the collision, the 8 -ball moves at an angle of 30° with the original direction of the cue ball.
(a) find the direction of motion of the cue ball
(b) speed of each ball

Assume balls are of equal mass.

Collisions

Example

Conservation of momentum:
$\mathrm{X}: \quad 5 m=m v_{8} \cos 30+m v_{c} \cos \theta_{c}$
$\mathrm{Y}: \quad 0=m v_{8} \sin 30+m v_{c} \sin \theta_{c}$

Conservation of kinetic energy:

before after $\frac{1}{2} m 5^{2}=\frac{1}{2} m v_{8}^{2}+\frac{1}{2} m v_{c}^{2}$
when mass is equal:
$5^{2}=v_{8}^{2}+v_{c}^{2}$
Pythagorus: right-angled triangle equation
$\theta_{c}+\theta_{8}=90$
$\theta_{c}=60^{\circ}$

Collisions

Example

From:
$0=m v_{8} \sin 30+m v_{c} \sin \theta_{c}$
$v_{8}=v_{c} \frac{\sin 60}{\sin 30}$
From:
before

after

$$
5 m=m v_{8} \cos 30+m v_{c} \cos \theta_{c}
$$

$$
v_{c}=\frac{5.0}{(\sin 60 \cot 30+\cos 60)} \quad=2.5 \mathrm{~m} / \mathrm{s}
$$

and:

$$
v_{8}=(2.5 \mathrm{~m} / \mathrm{s}) \frac{\sin 60}{\sin 30}=4.33 \mathrm{~m} / \mathrm{s}
$$

Rotation

Rotation

How do we calculate the motion of a rotating disc?

We could use circular motion to give each point a speed and direction
.... but that would be slow!

Rotation

How do we calculate the motion of a rotating disc?

rigid body: all points remain fixed relative to one another

We could use circular motion to give each point a speed and direction
.... but that would be slow!
Easier to say that the disc rotates with 800 revolutions per minute (rpm)

Rotation

Angular velocity

Rate of rotation: change in angle with time

$$
\begin{aligned}
& \bar{\omega}=\frac{\Delta \theta}{\Delta t} \mathrm{rad} / \mathrm{s} \quad \text { average angular velocity } \\
& \omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t} \quad \begin{array}{l}
\text { instantaneous } \\
\text { angular velocity }
\end{array}
\end{aligned}
$$

For small $\theta: \quad \theta=\frac{s}{r}[\mathrm{rad}]$

$$
\frac{d \theta}{d t}=\frac{1}{r}\left(\frac{d s}{d t}\right) \rightarrow v=r w
$$

Rotation

What is the angular speed of the hour hand of a clock?
(a) $1.45 \times 10^{-4} \mathrm{rads}^{-1}$
(b) $1.75 \times 10^{-3} \mathrm{rads}^{-1}$
(c) $0.0083 \mathrm{rads}^{-1}$
(d) $0.1 \mathrm{rads}^{-1}$

Rotation

What is the angular speed of the hour hand of a clock?

$$
\begin{aligned}
\omega_{\mathrm{hr}} & =\frac{1 \mathrm{rev}}{12 \mathrm{hr}} \\
& =\frac{2 \pi}{12 \times 3600} \\
& =1.45 \times 10^{-4} \mathrm{rads}^{-1}
\end{aligned}
$$

Rotation

Angular acceleration

$$
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t} \mathrm{rad} / \mathrm{s}^{2}
$$

Tangential acceleration speeds up or slows down rotation:

$$
a_{t}=\frac{d v}{d t}=r \frac{d \omega}{d t}=r \alpha
$$

There is still radial acceleration:
$a_{r}=\frac{v^{2}}{r} \quad \overrightarrow{v=r \omega} \quad a_{r}=\omega^{2} r$

Rotation

Linear and angular quantities:

Linear Quantity
 Angular Quantity

Angular Position $\quad \theta$

Velocity $\quad v=\frac{d x}{d t}$
Acceleration $a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}} \quad$ Angular acceleration $\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}$

Rotation

Eq. for constant linear acceleration

Eq.for angular acceleration

$$
\begin{aligned}
v & =v_{0}+a t \\
x & =x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

$$
\omega=\omega_{0}+\alpha t
$$

$$
\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

$$
\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)
$$

Rotation

A merry-go-round starts from rest and accelerates with angular acceleration of $0.010 \mathrm{rad} / \mathrm{s}^{2}$ for 14 s .
(a) How many revolutions does it make during this time?
(b) What is the average angular speed?
(I) $0.16 \mathrm{rev}, 0.01 \mathrm{rad} / \mathrm{s}$
(2) $0.98 \mathrm{rev}, 0.07 \mathrm{rad} / \mathrm{s}$
(3) $0.16 \mathrm{rev}, 0.07 \mathrm{rad} / \mathrm{s}$
(4) $0.98 \mathrm{rev}, 0.01 \mathrm{rad} / \mathrm{s}$

Rotation

A merry-go-round starts from rest and accelerates with angular acceleration of $0.010 \mathrm{rad} / \mathrm{s}^{2}$ for 14 s .

$$
\theta=\theta_{0}+\omega / t+\frac{1}{2} \alpha t^{2}
$$

$$
\Delta \theta=\theta-\theta_{0}=\frac{1}{2}\left(0.010 \mathrm{rads}^{-1}\right)(14 \mathrm{~s})^{2}
$$

$$
=0.98 \mathrm{rad}=0.98 \mathrm{rad}\left(\frac{1 \mathrm{rev}}{2 \pi \mathrm{rad}}\right)=0.16 \mathrm{rev}
$$

$$
\omega=\frac{\Delta \theta}{\Delta t}=\frac{0.98 \mathrm{rad}}{14 \mathrm{~s}}=0.07 \mathrm{rad} / \mathrm{s}
$$

Rotation

We have angular equivalents of x, v and a What about for $\bar{F}=m \bar{a}$?

Need angular equivalents for force and mass.
Forces that change rotational motion depend on.....

magnitude of the force and distance from the axis

Angular force, Torque:

$$
\tau=r F \sin \theta
$$

[Nm]
"twisting force"

Rotation

Quiz

A 55-g mouse runs out to the end of the $17-\mathrm{cm}$ long minute hand of a clock when the clock is at 10 past the hour.

What torque does the mouse's weight exert about the rotation axis of the clock hand?
(I) 0.1 Nm
(2) 0.016 Nm
(3) 0.09 Nm
(4) $7.9 \times 10^{-2} \mathrm{Nm}$

Rotation

Quiz

A 55-g mouse runs out to the end of the $17-\mathrm{cm}$ long minute hand of a clock when the clock is at 10 past the hour.

What torque does the mouse's weight exert about the rotation axis of the clock hand?

From clock face: $\quad \phi=\frac{180^{\circ}}{3}=60^{\circ}$

$$
\theta=180^{\circ}-60^{\circ}=120^{\circ}
$$

$$
\tau=r F \sin \theta
$$

$=(0.17 \mathrm{~m})(0.055 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \sin \left(120^{\circ}\right)$
$=7.9 \times 10^{-2} \mathrm{Nm}$

Rotation

What about mass?
It is easier to move an object if its

mass is low

It is easier to rotate an object if its mass is centred near the rotation axis

$$
\begin{aligned}
& F=m a_{t}=m \alpha r \\
& \tau=r F \sin 90=r F \\
& \left.\tau=m r^{2}\right) \alpha
\end{aligned}
$$

rotational inertia, I
Newton's 2nd law for rotation:

$$
\tau=I \alpha
$$

Rotation

Calculating rotational inertia

Discrete mass points:

$$
I=\Sigma m_{i} r_{i}^{2}
$$

Continuous matter:

$$
I=\int r^{2} d m
$$

Rotation

A light (no mass) rod of length $=2 \mathrm{~L}$.
2 heavy masses (each mass = m) attached at the end and middle.
What is the rotational inertia about the axis?
(I) mL^{2}
(2) $2 \mathrm{~mL}^{2}$
(3) $4 \mathrm{~mL}^{2}$
(4) $5 \mathrm{~mL}^{2}$
(5) $9 \mathrm{~mL}^{2}$

Rotation

A light (no mass) rod of length $=2 \mathrm{~L}$.
2 heavy masses (each mass = m) attached at the end and middle.
What is the rotational inertia about the axis?
Centre mass: $\quad \mathrm{I}=\mathrm{mL}^{2}$
End mass: $\quad \mathrm{I}=\mathrm{m}(2 \mathrm{~L})^{2}$

Total:

$$
I=\Sigma m_{i} r_{i}^{2}=5 \mathrm{~mL}^{2}
$$

Rotation

What is the net torque when it's released?
(I) 2 mgL
(2) -2 mgL
(3) 3 mgL

$$
\frac{(4)-3 \mathrm{mgL}}{(5) 4 \mathrm{mgL}}
$$

Rotation

What is the net torque when it's released?

$$
\begin{aligned}
\tau & =r F \sin 90 \\
& =L(-m g) \sin (0)+(2 L)(-m g) \sin (0) \\
& =-3 m g L
\end{aligned}
$$

Rotation

Calculating rotational inertia

Discrete mass points:

$$
I=\Sigma m_{i} r_{i}^{2}
$$

Continuous matter:

$$
I=\int r^{2} d m
$$

Rotation

Rotational inertia

Also p I63 in textbook

Rotation

If we know I through the centre of mass of the object:

$$
I=\frac{2}{5} M r^{2}
$$

$$
I=\frac{2}{5} M r^{2}+M d^{2}
$$

$$
=\frac{7}{5} M r^{2}
$$

we can calculate I through any parallel axis. $I=I_{\mathrm{cm}}+M d^{2}$

