Essential Physics I

$$
\begin{gathered}
\text { 英語で物理学の } \\
\text { エッセンス }
\end{gathered}
$$

Lecture 6：23－05－I6

Last lecture

3 forces:

Friction

$F_{s} \leq \mu_{s} N$

Drag

$$
F_{k}=\mu_{k} N
$$

Last lecture: review

A brick rests on an inclined plane.
The friction force is:

(a) zero
(b) = weight of brick
(c) > weight of brick
(d) < weight of brick

Forces along plane: \hat{i}

$$
\begin{gathered}
F_{g, i}-F_{s}=m \times 0 \\
=F_{g} \sin \theta
\end{gathered}
$$

$$
F_{g} \sin \theta=F_{s} \quad F_{g}>F_{g} \sin \theta
$$

$$
F_{s}<F_{g}
$$

Last lecture: review

If drag is proportional to a ball's speed:

$$
F_{\text {drag }} \propto|\bar{v}|
$$

and you throw the ball upward, the magnitude of the acceleration is largest...
(a) Just after ball is released

$$
\overbrace{F_{g}}
$$

$$
F_{g}=m a_{b}
$$

(b) At top of trajectory $\quad v=0$
(c) Acceleration is always the same

This lecture: work \& energy

The concept of work
How to calculate work
with a constant force
with a varying (changing) force

The concept of kinetic energy

The relation between work and kinetic energy

The concept of power and its relation to energy

Work

When the force is constant, we can easily (!) find the speed

$$
\bar{F}_{\mathrm{net}}=\bar{F}_{g}+\bar{F}_{N}=\mathrm{constant}
$$

But if the slope changes
\bar{F}_{N} changes direction, so $\bar{F}_{\text {net }}$ is not constant.

Work

New concept: WORK

Work increases...

Units of work: $N m=J \quad$ (Joules)

Work

New concept: WORK

Work

Quiz
Which of these does work?

(5) A \& B
(7) B \& C
(6) A \& C

Work

Quiz

Which of these does work?

No mechanical forces

No forces in direction of

$$
W=F_{x} \Delta x
$$

$$
F_{x}=0 \quad F_{x}=0
$$

Work

Which of these does work?

circular motion

puck sliding on (frictionless) ice
(I) A
(3) $A+B$
(2) B (4) Neither A or B

Work

A crane lifts a 650 kg beam vertically upward 23 m and then swings it eastward 18 m .

How much work does the crane do?
(Neglect friction, assume beam velocity is constant)

(a) 0 kJ
(b) 261 kJ
(c) $\quad 115 \mathrm{~kJ}$
(d) 147 kJ

Work

Quiz

$F_{\text {applied }}$ How much work does the crane do?

$$
\begin{aligned}
F_{\text {applied }}-m g & =m \times 0 \\
F_{\text {applied }} & =m g
\end{aligned}
$$

\uparrow Vertical motion: $W=F_{\text {applied, } y} \Delta y=m g \Delta y$

$$
\begin{aligned}
& =(650 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(23 \mathrm{~m}) \\
& =147 \mathrm{~kJ}
\end{aligned}
$$

\leftarrow East motion: $W=F_{\text {applied, } \mathrm{x}} \Delta x$

$$
\begin{aligned}
& =0 \Delta x \\
& =0
\end{aligned}
$$

Work

This combination:

is called a scalar product, $\bar{F} \cdot \Delta \bar{r}$
The result (e.g. work) is not a vector, although it can be negative. In component form:

$$
\bar{F} \cdot \Delta \bar{r}=F_{x} \Delta r_{x}+F_{y} \Delta r_{y}+F_{z} \Delta r_{z}(=F \Delta r \cos \theta)
$$

Work

e.g. We could have solved the crane problem using components of the force:

$$
\begin{aligned}
\Delta \bar{r} & =18 \hat{i}+23 \hat{j} \mathrm{~m} \\
\bar{F} & =\left(650 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \hat{j}
\end{aligned}
$$

$$
\begin{aligned}
W & =\bar{F} \cdot \Delta r=F_{x} \Delta r_{x}+F_{y} \Delta r_{y} \\
& =(18 \mathrm{~m} \times 0)+\left(23 \mathrm{~m} \times\left(650 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\right)=146.7 \mathrm{~kJ}
\end{aligned}
$$

Work

Find the work done by a force $\bar{F}=(1.8 \hat{i}+2.2 \hat{j}) \mathrm{N}$ as it acts on an object moving from the origin to point $(56 \hat{i}+31 \hat{j}) \mathrm{m}$
(a) 100 J
$W=(1.8 \hat{i}+2.2 \hat{j}) \mathrm{N} \cdot(56 \hat{i}+31 \hat{j}) \mathrm{m}$
(b) 169 J
(c) 68 J
(d) 179 J
$=\underbrace{(1.8 \mathrm{~N})(56 \mathrm{~m})}_{\downarrow})+\underbrace{(2.2 \mathrm{~N})(31 \mathrm{~m})}_{\downarrow})$
$F_{x} \Delta r_{x}$
$F_{y} \Delta r_{y}$

$$
=169 \mathrm{~J}
$$

Work

How does this help with forces that vary?

Force changes with position

Work

How does this help with forces that vary?

Divide region into small rectangles with width Δx

$F \approx$ constant over Δx
$\Delta W=F(x) \Delta x$

$$
W \simeq \sum_{i=0}^{N} \Delta W_{i}=\sum_{i=0}^{N} F\left(x_{i}\right) \Delta x
$$

Work

How does this help with forces that vary?

$$
W \simeq \sum_{i=0}^{N} \Delta W_{i}=\sum_{i=0}^{N} F\left(x_{i}\right) \Delta x
$$

Work

How does this help with forces that vary?

$$
W=\lim _{\Delta x \rightarrow 0} \sum_{i=0}^{N} F\left(x_{i}\right) \Delta x=\int_{x_{1}}^{x_{2}} F(x) d x
$$

Work done by a force varying in ID

Integration

Integral is total area under graph
$\int_{a}^{b} x^{r} d x=\left[\frac{x^{r+1}}{r+1}\right]_{a}^{b}$

$$
=\frac{b^{r+1}}{r+1}-\frac{a^{r+1}}{r+1}
$$

Work

Example

A 4 kg block on a frictionless table is attached to a horizontal spring.
The spring constant is $\mathrm{k}=400 \mathrm{~N} / \mathrm{m}$. It is compressed to $x_{1}=-5 \mathrm{~cm}$
Find the work done by the spring.

Hooke's law: $F_{x}=-k x$

Work

Example

A 4 kg block on a frictionless table is attached to a horizontal spring.
The spring constant is $\mathrm{k}=400 \mathrm{~N} / \mathrm{m}$. It is compressed to $x_{1}=-5 \mathrm{~cm}$
Find the work done by the spring.

Hooke's law: $F_{x}=-k x$

$$
\begin{aligned}
& =\left(-\frac{1}{2}(400 \mathrm{~N} / \mathrm{M})(0)\right)-\left(-\frac{1}{2}(400 \mathrm{~N} / \mathrm{M})(-0.05 \mathrm{~m})^{2}\right) \\
& =0.5 \mathrm{~J}
\end{aligned}
$$

Work

Example

A 4 kg block on a frictionless table is attached to a horizontal spring.
The spring constant is $\mathrm{k}=400 \mathrm{~N} / \mathrm{m}$. It is compressed to $x_{1}=-5 \mathrm{~cm}$
Find the work done by the spring.

Area of triangle: $\frac{1}{2}$ base \times height
$=\frac{1}{2}(0.05) \times F_{x}$
$=\frac{1}{2}(0.05)(k x)=\frac{1}{2}(0.05)(400 \times 0.05)$
$=0.5 \mathrm{~J}$

Work

Quiz

Spider silk is remarkably elastic. A silk strand has a spring constant $\mathrm{k}=70 \mathrm{mN} / \mathrm{m}$ and stretches 9.6 cm when a fly hits it.

How much work did the fly's impact do on the silk strand?
(a) 3.36 mJ
(b) 6.72 mJ
(c) 0.32 mJ
(d) 0.15 mJ

Work

 QuizSpider silk is remarkably elastic. A silk strand has a spring constant $\mathrm{k}=70 \mathrm{mN} / \mathrm{m}$ and stretches 9.6 cm when a fly hits it.

How much work did the fly's impact do on the silk strand?

$$
\begin{array}{rlrl}
\text { (a) } 3.36 \mathrm{~mJ} & W & =\int_{0}^{0.096 \mathrm{~m}} F_{x} d x \\
\text { (b) } 6.72 \mathrm{~mJ} & & =\int_{0}^{0.096 \mathrm{~m}}-k x d x=\left[-\frac{1}{2} k x^{2}\right]_{0}^{0.096} \\
\begin{array}{ll}
\text { (c) } 0.32 \mathrm{~mJ} & \\
\text { (d) } & 0.15 \mathrm{~mJ}
\end{array} & =-\frac{1}{2}(70 \mathrm{mN} / \mathrm{m})(0.096 \mathrm{~m})^{2} \\
& & =-0.32 \mathrm{~mJ}
\end{array}
$$

work done by fly: $\quad 0.32 \mathrm{~mJ}$

Work

Quiz

A force $\bar{F}=2 x+5 \mathrm{~N}$ acts on a particle. Find the work done by the force as the particle moves from $\mathrm{x}=0 \mathrm{~m}$ to $\mathrm{x}=2 \mathrm{~m}$.
(a) 14 J
(b)
9 J
(c) 18 J
$W=\int_{0}^{2 m} \bar{F}(x) d x$
$=\int_{0}^{2 m}(2 x+5) d x$
$=\left[\frac{2 x^{2}}{2}+5 x\right]_{0}^{2 \mathrm{~m}}$

$$
=2^{2}+5 \times 2=14 \mathrm{~J}
$$

Energy

We have seen:

$$
W=\int F d x
$$

Therefore:

$$
W_{\mathrm{net}}=\int F_{\mathrm{net}} d x
$$

But we also know:

Therefore:

$$
F_{\mathrm{net}}=m a=m \frac{d v}{d t}
$$

$$
W_{\mathrm{net}}=\int m \frac{d v}{d t} d x=\int m d v \frac{d x}{d t}
$$

Energy

But:

$$
\frac{d x}{d t}=v
$$

Therefore:

$$
W_{\mathrm{net}}=\int m v d v
$$

Suppose an object starts at speed v_{1} and ends at v_{2} then:

$$
W_{\mathrm{net}}=\int_{v_{1}}^{v_{2}} m v d v=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}
$$

$$
K=\frac{1}{2} m v^{2} \quad \text { Kinetic energy }
$$

Energy

The change in an object's kinetic energy is equal to the net work done on the object:

Work-energy theorem:

$$
\Delta K=W_{\text {net }}
$$

Energy

Quiz

At what speed must a 950 kg car be moving to have the same kinetic energy as a $3.2 \times 10^{4} \mathrm{~kg}$ truck going at $20 \mathrm{~km} / \mathrm{h}$?

(a) $116 \mathrm{~km} / \mathrm{h}$

(b) $3.4 \mathrm{~km} / \mathrm{h}$
(c) $58 \mathrm{~km} / \mathrm{h}$
(d) $673 \mathrm{~km} / \mathrm{h}$

Energy

Quiz

At what speed must a 950 kg car be moving to have the same kinetic energy as a $3.2 \times 10^{4} \mathrm{~kg}$ truck going at $20 \mathrm{~km} / \mathrm{h}$?
(a) $116 \mathrm{~km} / \mathrm{h}$
(b) $3.4 \mathrm{~km} / \mathrm{h}$
(c) $58 \mathrm{~km} / \mathrm{h}$
(d) $673 \mathrm{~km} / \mathrm{h}$

$$
\mathrm{KE}=\frac{1}{2} m_{T} v_{T}^{2} \quad=\frac{1}{2} m_{c} v_{c}^{2}
$$

$v_{c}= \pm v_{T} \sqrt{\frac{m_{T}}{m_{c}}}$
$= \pm 20 \mathrm{~km} / \mathrm{h} \sqrt{\frac{3.2 \times 10^{4} \mathrm{~kg}}{950 \mathrm{~kg}}}$
$= \pm 116 \mathrm{~km} / \mathrm{h}$

Energy

Example

If the speed of a car is increased by 2 , by what factor will the minimum stopping distance be increased?
(assuming breaking force is constant)

$$
\begin{aligned}
& \Delta K=W_{\text {net }} \\
& \begin{aligned}
& \frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}=W_{\text {net }}=\bar{F} \cdot \bar{d}=F \times d \quad \text { (1 dimension) } \\
& 0-\frac{1}{2} m v_{1}^{2} \\
&=F \times d_{1} \\
&-\frac{1}{2} m\left(2 v_{1}\right)^{2}=F \times d_{2}
\end{aligned} \quad \frac{d_{1}}{d_{2}}=\frac{1}{4} \longrightarrow d_{2}=4 d_{1}
\end{aligned}
$$

Energy

Example

If the speed of a car is increased by 2 , by what factor will the minimum stopping distance be increased?

Power

Since $W=F_{x} \Delta x$, it takes the same amount of work to run up a flight of stairs and to walk up.

But isn't running harder?
Yes! Because the rate at which you do the work has increased.

Power:

$$
\begin{aligned}
P_{\text {average }} & =\frac{\Delta W}{\Delta t} \quad \text { Unit: } \mathbf{W} \\
P & =\frac{d W}{d t}
\end{aligned}
$$

Power

Since: $\quad W=\bar{F} \cdot \Delta \bar{r}$

We can write for a small change in $\Delta \bar{r}$:

$$
\Delta \bar{r} \rightarrow d \bar{r}: \quad d W=\bar{F} \cdot d \bar{r}
$$

Divide both sides by $d t$:

$$
P=\frac{d W}{d t}=\bar{F} \cdot \frac{d \bar{r}}{d t}=\bar{F} \cdot \bar{v}
$$

$$
P=\bar{F} \cdot \bar{v}
$$

Which consumes more energy:
(a) 1.2 kW hair drier used for 10 minutes?
(b) 7 W night light left on for 24 hours?

Average power: $\quad P_{\mathrm{av}}=\frac{\Delta W}{\Delta t}$
Hair drier: $\Delta W=P_{\mathrm{av}} \Delta t=(1.2 \mathrm{~kW})\left(10 \min \times \frac{60 \mathrm{~s}}{1 \min }\right)=720 \mathrm{~kJ}$
Light: $(7 \mathrm{~W})\left(24 \mathrm{hr} \times \frac{3600 \mathrm{~s}}{1 \mathrm{hr}}\right)=605 \mathrm{~kJ}$

(but close!)

Power

A sprinter completes a 100 m run in 10.6 s , doing 22.4 kJ of work. What is her average power output?
(a) 2.1 W

$$
P_{\mathrm{av}}=\frac{\Delta W}{\Delta t}=\frac{22.4 \mathrm{~kJ}}{10.6 \mathrm{~s}}=2.1 \mathrm{~kW}
$$

(b) 4.2 kW
(c) 2.1 kW
(d) 1.05 kW

Putting it together

A 1400 kg car ascends a mountain road at a steady $60 \mathrm{~km} / \mathrm{h}$ against a 450 N force of air resistance.

If the engine supplies energy to the wheels at a rate of 38 kW , what is the slope angle of the road?
constant velocity: $\quad \Delta \mathrm{KE}=0$
work done on car $\quad W=0$
Power from = Power used on
 engine gravity and drag
$P_{g}=\bar{F}_{g} \cdot \bar{v}=-m g \sin \theta \times v$
$P_{\text {drag }}=\bar{F}_{\text {drag }} \cdot \bar{v}$

Power used on gravity
Power used on drag

Putting it together

A 1400 kg car ascends a mountain road at a steady $60 \mathrm{~km} / \mathrm{h}$ against a 450 N force of air resistance.

If the engine supplies energy to the wheels at a rate of 38 kW , what is the slope angle of the road?
constant velocity: $\quad \Delta \mathrm{KE}=0$
work done on car $\quad W=0$
Power from = Power used on
 engine gravity and drag

$$
P_{g}=\bar{F}_{g} \cdot \bar{v}=-m g \sin \theta \times v
$$

Power used on gravity

$$
P_{\text {drag }}=\bar{F}_{\text {drag }} \cdot \bar{v}=-F_{\text {drag }} \times v \quad \text { Power used on drag }
$$

Putting it together

Example

$$
\begin{aligned}
& P_{\text {tot }}=P_{\text {engine }}+P_{g}+P_{\text {drag }}=0 \\
& P_{\text {engine }}-m g v \sin \theta-F_{\text {drag }} v=0 \\
& \theta=\sin ^{-1}\left(\frac{P_{\text {engine }}-F_{\text {drag }} v}{m g v}\right) \\
& \quad=\sin ^{-1}\left(\frac{38,000 \mathrm{~W}-(450 \mathrm{~N})(16.7 \mathrm{~m} / \mathrm{s})}{(1400 \mathrm{~kg})(9.81 \mathrm{~m} / \mathrm{s})(16.7 \mathrm{~m} / \mathrm{s})}\right) \\
& \begin{aligned}
(v=60 \mathrm{~km} / \mathrm{h}=16.7 \mathrm{~m} / \mathrm{s})
\end{aligned} \\
& \quad=7.7^{\circ}
\end{aligned}
$$

Putting it together

Quiz

A tractor tows a plane from its airport gate, doing 8.7 MJ of work.
The link between the plane to the tractor makes a 22 degree angle with the plane's motion, and the tension in the link is 0.4 I MN .

How far does the tractor move the plane?
(a) 2.3 m
(b) 20.1 m
(c) 10 m
(d) 22.9 m

Putting it together

Quiz

A tractor tows a plane from its airport gate, doing 8.7 MJ of work.
The link between the plane to the tractor makes a 22 degree angle with the plane's motion, and the tension in the link is 0.4 I MN.

How far does the tractor move the plane?
(a) 2.3 m

$$
W=\bar{F} \cdot \Delta \bar{r}=F_{T} \cos \theta \Delta r
$$

(b) 20.1 m

$$
\Delta r=\frac{W}{F_{T} \cos \theta}=\frac{8.7 \times 10^{6} \mathrm{~J}}{4.1 \times 10^{5} \mathrm{~N} \cos 22^{\circ}}
$$

(c) $\quad 10 \mathrm{~m}$

$$
=22.9 \mathrm{~m}
$$

Science in the news

The world's smallest movie

Moving atoms

What were IBM trying to do?
(a) Make a movie using a computer
(b) Make a movie using atoms
(c) Try a new way to move atoms
(d) Move the biggest number of atoms

Moving atoms

What was the science question?
(a) Can we make a faster, smaller computer?
(b) Can we make screens for iPhones to play movies?
(c) How small can you make a magnet for data storage?
(d) No science purpose: advertising campaign

How many atoms did they move?
(a) 500
(b) 5,000
(c) 10,000
(d) $1,000,000$

What type of molecules (atoms) were used?
(a) Carbon monoxide (CO)
(b) Nitrogen (N)
(c) Carbon (C)
(d) Zinc (Zn)

Moving atoms

How does the 'scanning tunnelling microscope' arrange atoms?
(a) The tip of the microscope physically pushes the atoms on the surface
(b) A laser from the microscope drags the surface atoms
(c) The microscope drops its atoms on the surface
(d) A reaction between atoms on microscope and surface allows atoms to be dragged

Moving atoms

What is the smallest number of atoms needed to store data?
(a) 1
(b) 12
(c) 1300
(d) $1,000,000$

Moving atoms

With such a device, how many movies could your iPhone hold?
(a) 2
(b) 500
(c) 10,000
(d) All movies ever made

Moving atoms

If the atom was the size of an orange, how big would the orange look through the microscope?
(a) The size of a watermelon
(b) The size of the moon
(c) The size of the Earth
(d) The size of the Sun

Moving atoms

What would the scientists like this movie to achieve?
(a) Encourage 1,000 children to do science
(b) Get more funding for science
(c) Allow them to present at an international conference
(d) Make people remember IBM

