Essential Physics I

英語で学ぶ物理学の
エッセンス I

Lecture 5： $16-05-16$

Review: Forces \& circular motion

A space station's shape is a ring, 450 m in diameter.
How many revolutions (turns) per minute should it rotate in order to simulate the Earth's gravity, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$?
(a) ~ 1.5 revs $/ \mathrm{min}$
(b) $\sim 2.0 \mathrm{revs} / \mathrm{min}$
(c) $\sim 4.0 \mathrm{revs} / \mathrm{min}$
(d) ~30 revs $/ \mathrm{min}$

Review: Forces \& circular motion

A space station's shape is a ring, 450 m in diameter.
How many revolutions (turns) per minute should it rotate in order to simulate the Earth's gravity, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{aligned}
& a=\frac{v^{2}}{r}=g=9.81 \\
& v=\frac{2 \pi r}{T} \\
& T=\sqrt{\frac{4 \pi^{2} r}{g}}=\sqrt{\frac{4 \pi^{2} D}{2 g}}=30.1 s \\
& \mathrm{rev} / \mathrm{min}=60.0 / 30.1 \sim 2
\end{aligned}
$$

Review: Forces \& circular motion

If centripetal acceleration acts towards the centre, why does the person walk on the outside edge?
(a) Bad diagram!

Artificial Grauity?
(b) There is another (centrifugal) force acting to balance the centripetal force
(c) Newton's laws are different on the space station

(d) there is an extra force creating artificial gravity

Review: Forces \& circular motion

Person thinks he should walk in a straight line (Newton's Ist)
But the space station is accelerating:

Review: Forces \& circular motion

Person thinks he should walk in a straight line (Newton's Ist)
But the space station is accelerating: A force is acting

Review: Forces \& circular motion

Artificial Grauity?

Person thinks he should walk in a straight line (Newton's Ist)
But the space station is accelerating: A force is acting It pushes his path inwards (centripetal force)

Review: Forces \& circular motion

Person thinks he should walk in a straight line (Newton's Ist)
But the space station is accelerating: A force is acting It pushes his path inwards (centripetal force)

But to the person, the force seems to push him outwards
This is called the 'centrifugal force' but it is a fake force due to this not being an inertial frame (see lecture 4)

This lecture: different forces

Calculate the forces from: Friction

Springs
Drag
Calculate the friction force for stationary ($v=0$) and moving objects.

Use Hooke's Law to calculate the force for springs

Draw a diagram showing the forces acting on an object
... and calculate its motion

Friction

.... or lack of it!

Friction

Friction is the force that exists between two objects in contact.

A surface might look smooth, but at microscopic level it is far more irregular.

It is proportional to the normal force.

It always acts against the direction of motion

Friction

There are 2 kinds of friction:

Static friction exists between 2 surfaces not moving relative to each other.

$$
F_{s} 〔 \mu_{s} N
$$

μ_{s} is the coefficient of static friction

Range 0 to max value. The max value depends on the type of surface.

Friction

Pushing a heavy object:

It is very hard to start moving. F_{s} increases as your force increases

Friction

Pushing a heavy object:

It is very hard to start moving. F_{s} increases as your force increases

Once it is moving, it is easier to push. F_{s} is replaced by F_{k}

Friction

static friction
 $\mu_{s}>\mu_{k} \quad \begin{gathered}\text { kinetic } \\ \text { friction }\end{gathered}$

Pushing a heavy object:

It is very hard to start moving. F_{s} increases as your force increases

Once it is moving, it is easier to push. F_{s} is replaced by F_{k}

Friction

material I	material 2	μ_{s}	μ_{k}
ice	ice	0.01	0.01
wood	wood	0.25	0.129
leather	wood	0.61	0.52
leather	metal	0.61	0.25
glass	glass	$0.9-1.0$	0.4
rubber	concrete (wet)	0.3	0.25
rubber	concrete (dry)	1	0.8
waxed ski	snow	0.1	0.05

Friction

Quiz

A man pushes a 73 kg box along a floor where the coefficient of kinetic friction is 0.81 . What is the frictional force on the cabinet?
(a) 120 N
(b) 580 N
(c) 240 N

(d) 59.1 N

Friction

Quiz

A man pushes a 73 kg box along a floor where the coefficient of kinetic friction is 0.81 . What is the frictional force on the cabinet?
$\bar{F}_{\text {friction }}=\mu_{K} \bar{F}_{N}$
Newton 2nd: $\bar{F}=m \bar{a}$
vertical component: $\bar{F}_{N}-\bar{F}_{g}=m \times 0$

$$
\begin{aligned}
\bar{F}_{N} & =\bar{F}_{g} \\
& =m g
\end{aligned}
$$

$$
\bar{F}_{\text {fric }}=(0.81)(73 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$$
=580 \mathrm{~N}
$$

Friction

Quiz

A hockey puck is given an initial velocity of $14 \mathrm{~m} / \mathrm{s}$. If it comes to a rest in 56 m , what is the coefficient of kinetic friction?
(a) 0.0
(b) 0.36
(c) 0.18
(d) 0.21

Friction

A hockey puck is given an initial velocity of $14 \mathrm{~m} / \mathrm{s}$. If it comes to a rest in 56 m , what is the coefficient of kinetic friction?
horizontal component:

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& 0 \\
& a=-\frac{v_{0}^{2}}{2\left(x-x_{0}\right)}
\end{aligned}
$$

Newton 2nd: $\bar{F}=m \bar{a}$
vertical: $\bar{F}_{N}-\bar{F}_{g}=m \times 0$

$$
\begin{aligned}
\bar{F}_{N} & =\bar{F}_{g} \\
& =m g
\end{aligned}
$$

Friction

Quiz

A hockey puck is given an initial velocity of $14 \mathrm{~m} / \mathrm{s}$. If it comes to a rest in 56 m , what is the coefficient of kinetic friction?

Newton 2nd: $\bar{F}=m \bar{a}$
horizontal: $\quad F_{\text {fric }}=-\mu_{K} F_{N}=m a$

$$
-\mu_{K} m g=m a
$$

$$
-\mu_{K}=-\frac{a}{g}=-\frac{v_{0}^{2}}{2 g\left(x-x_{0}\right)}
$$

$$
=-\frac{(14 \mathrm{~m} / \mathrm{s})^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(56 \mathrm{~m})}
$$

$$
=0.18
$$

Friction

2 children are pulled on a sled on snow.
The sled is pulled by a rope that makes an angle of 40° with the horizontal.

The children have a total mass of 45 kg and the sled mass is 5 kg .
The coefficients of friction are $\mu_{s}=0.2$ and $\mu_{k}=0.15$.

Find the frictional force exerted by the ground on the sled and the acceleration of the sled if the tension in the rope is:
(a) 100 N
(b) 140 N .

Friction

Example

(a) $\bar{F}_{\mathrm{T}}=100 \mathrm{~N}$

Rope tension components:
$F_{T, x}=F_{T} \cos 40^{\circ}$

$$
=(100 \mathrm{~N})(0.766)=76.6 \mathrm{~N}
$$

$F_{T, y}=F_{T} \sin 40^{\circ}$

$$
=(100 \mathrm{~N})(0.643)=64.3 \mathrm{~N}
$$

vertical Newton 2nd: $\bar{F}=m \bar{a}$

$$
\begin{aligned}
F_{\mathrm{N}}+F_{\mathrm{T}, \mathrm{y}}+F_{g} & =m \times 0 \quad\left(a_{y}=0\right) \\
F_{\mathrm{N}}=m g-F_{\mathrm{T}, \mathrm{y}} & =(50 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)-64.3 \mathrm{~N} \\
& =426 \mathrm{~N}
\end{aligned}
$$

Friction

Example

Maximum static friction:

$$
\begin{aligned}
F_{\mathrm{s}, \max } & =\mu_{s} F_{\mathrm{N}} \\
& =0.2(426 \mathrm{~N})=85.2 \mathrm{~N}
\end{aligned}
$$

since:

$F_{\mathrm{T}, \mathrm{x}}=76.6 \mathrm{~N}<F_{\mathrm{s}, \max } \quad$ sled doesn't move.

Therefore friction force is:
$F_{\text {friction }}=F_{\mathrm{s}}=F_{\mathrm{T}, \mathrm{x}}=76.6 \mathrm{~N}$
(less than maximum value)

Friction

Example

(b) $\bar{F}_{\mathrm{T}}=140 \mathrm{~N}$

Rope tension components:
$F_{\mathrm{T}, \mathrm{x}}=140 \mathrm{~N} \cos 40^{\circ}=107 \mathrm{~N}$
$F_{\mathrm{T}, \mathrm{y}}=140 \mathrm{~N} \sin 40^{\circ}=90 \mathrm{~N}$
vertical Newton 2nd: $\bar{F}=m \bar{a}$

$F_{\mathrm{N}}=m g-F_{\mathrm{T}, \mathrm{y}}=490 \mathrm{~N}-90 \mathrm{~N}=400 \mathrm{~N}$
Maximum static friction:
$F_{\mathrm{s}, \max }=\mu_{s} F_{\mathrm{N}}=0.2(400 \mathrm{~N})=80.0 \mathrm{~N}$
$F_{\mathrm{s}, \max }<F_{\mathrm{T}, \mathrm{x}} \longrightarrow$ sled will move.

Friction

Example

Kinetic friction:

$$
\begin{aligned}
F_{\mathrm{K}} & =\mu_{K} F_{\mathrm{N}} \\
& =0.15(400 \mathrm{~N})=60.0 \mathrm{~N}
\end{aligned}
$$

horizontal Newton 2nd: $\bar{F}=m \bar{a}$
$F_{\mathrm{T}, \mathrm{x}}-F_{\mathrm{K}}=m a$
$107 \mathrm{~N}-60 \mathrm{~N}=(50 \mathrm{~kg}) a$
$a=\frac{107-60}{50}=0.94 \mathrm{~m} / \mathrm{s}^{2}$

Friction

Quiz

Starting from rest, a skier slides 100 m down a 28° slope. How much longer does the run take if the coefficient of kinetic friction is 0.17 instead of 0 ?
(a) 1.4 s
(b) 8 s
(c) 6.5 s
(d) 13 s

100 m

Define co-ordinates:

\hat{i} parallel to slope
\hat{j} perpendicular to slope

Newton 2nd: $\bar{F}=m \bar{a} \quad$ components:
$\hat{i} \quad-F_{\text {fric }}+F_{g} \sin \theta=m a_{i}$
$\hat{j} \quad F_{\mathrm{N}}-F_{g} \cos \theta=m a_{j}=0 \quad\left(a_{j}=0\right)$
$F_{\mathrm{N}}=m g \cos \theta$

$$
\left(F_{g}=m g\right)
$$

Friction

Quiz

100 m

Therefore, kinetic friction:
$\bar{F}_{\text {fric }}=\mu_{K} \bar{F}_{N}=\mu_{K} m g \cos \theta$
(a) $\mu_{K}=0 \longrightarrow \bar{F}_{\text {fric }}=0$

$$
\begin{aligned}
-F_{\text {rric }}+F_{g} \sin \theta & =m a_{i} \\
0 \quad a_{i} & =g \sin \theta
\end{aligned}
$$

Constant acceleration question in \hat{i} direction:

$$
\begin{aligned}
& x_{i}=x_{0, i}+v_{0, i} t+\frac{1}{2} a_{i} t^{2} \\
& t_{a}=\sqrt{\frac{2\left(x_{i}-x_{0, i}\right)}{a_{i}}}=\sqrt{\frac{2(100)}{9.81 \sin 28^{\circ}}}=6.59 \mathrm{~s}
\end{aligned}
$$

Friction

Quiz

100 m
$\hat{i} \quad-F_{\text {fric }}+F_{g} \sin \theta=m a_{i}$

$$
a_{i}=-0.17 g \cos \theta+g \sin \theta
$$

$$
t_{b}-t_{a}=7.99-6.59=1.4 \mathrm{~s}
$$

Springs

Ideal spring:

Displacement from equilibrium is proportional to the force it produces:

$$
\bar{F}_{\mathrm{sp}}=-k \Delta x
$$

Hooke's law
k : spring constant, measure of spring stiffness

Springs

$\bar{F}_{\mathrm{sp}}=-k \Delta x \quad$ Hooke's law

equilibrium

Springs

$\bar{F}_{\mathrm{sp}}=-k \Delta x \quad$ Hooke's law

Hooke's Law
$\begin{aligned} & \text { We show the force } \vec{F} \text { exerted } \\ & \text { on a mass by a spring }\end{aligned} \quad F_{x}=-k x$
\longrightarrow

X

Springs

What force is needed to stretch a spring by 48 cm , if the spring constant is $270 \mathrm{~N} / \mathrm{m}$?
(a) $-12,960 \mathrm{~N}$
(b) $\quad 12,960 \mathrm{~N}$
(c) 130 N
(d) -130 N

Springs

What force is needed to stretch a spring by 48 cm , if the spring constant is $270 \mathrm{~N} / \mathrm{m}$?

Hooke's law: $\quad \bar{F}_{\mathrm{sp}}=-k \Delta x$

$$
=-(270 \mathrm{~N} \cdot \mathrm{~m})(0.48 \mathrm{~m})=-130 \mathrm{~N}
$$

(applied force, $\left.\bar{F}_{\text {app }}\right)=-\left(\right.$ spring resistance, $\left.\bar{F}_{\mathrm{sp}}\right)$

$$
\begin{aligned}
\bar{F}_{\mathrm{app}} & =-\bar{F}_{\mathrm{sp}} \\
& =130 \mathrm{~N}
\end{aligned}
$$

Springs

Example

A helicopter rises vertically, carrying a 35 kg block on a spring scale. The spring constant is $\mathrm{k}=3.4 \mathrm{kN} / \mathrm{m}$.

How much does the spring extend
(a) when the helicopter is at rest?
(b) when its accelerating upwards at $1.9 \mathrm{~m} / \mathrm{s}^{2}$?

Springs

Example

A helicopter rises vertically, carrying a
35 kg block on a spring scale. The spring constant is $\mathrm{k}=3.4 \mathrm{kN} / \mathrm{m}$.
vertical Newton 2nd: $\bar{F}=m \bar{a}$

$$
F_{s}+F_{g}=m a \longrightarrow k x-m g=m a
$$

$$
x=\frac{m(a+g)}{k}
$$

(a) $\bar{v}=0$ (helicopter at rest) $x=\frac{(35 \mathrm{~kg})\left(0+9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{3400 \mathrm{~N} / \mathrm{m}}=10 \mathrm{~cm}$
(b) $\bar{a}=1.9 \mathrm{~m} / \mathrm{s}^{2}$

$$
x=\frac{(35 \mathrm{~kg})\left(1.9+9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{3400 \mathrm{~N} / \mathrm{m}}=12 \mathrm{~cm}
$$

Springs

Quiz

2 large crates, with masses 640 kg and 490 kg , are connected by a stiff massless spring with $\mathrm{k}=8.1 \mathrm{kN} / \mathrm{m}$.

They are moved along a frictionless floor by a horizontal force applied to the more massive crate.

If spring extends 5.1 cm , what is the applied force?
(a) 0.1 N
(b) 540 N
(c) 953 N
(d) 950 N

Springs

Block I: $\bar{F}_{\text {net }, 1}=\bar{F}-\bar{F}_{\text {sp }}=m_{1} a$
Block 2: $\bar{F}_{\text {net }, 2}=\bar{F}_{\mathrm{sp}}=m_{2} a \rightarrow a=\frac{\bar{F}_{\mathrm{sp}}}{m_{2}}$

$$
\begin{aligned}
\bar{F} & =\bar{F}_{\mathrm{sp}}+m_{1}\left(\frac{\bar{F}_{\mathrm{sp}}}{m_{2}}\right)=k \Delta x\left(\frac{m_{1}+m_{2}}{m_{2}}\right) \\
& =(8100 \mathrm{~N} / \mathrm{m})(0.051 \mathrm{~m})\left(\frac{640+490 \mathrm{~kg}}{490 \mathrm{~kg}}\right)=953 \mathrm{~N}
\end{aligned}
$$

Drag

Last lecture, we estimated the acceleration of a sky diver and found it much less than g

We concluded that we had neglected the drag force from air resistance

Drag forces depend on several factors including:

Fluid density
The object's cross-sectional area
The object's speed.

Drag

An object falling:
Speed is initially low, so drag is low.
As object gains speed, drag increases.
Eventually the drag force and gravity will be equal.

At this point $\bar{F}_{\text {net }}=0$, and the speed is constant, called the terminal speed.

Because drag depends on area and not on mass, a sheet of paper falls much slower than a golf ball.

Drag

Without drag they would fall at the same rate $\bar{F}_{\text {net }}=n g=p a a$

Drag

Drag

A 50 kg parachute descends at a steady $40 \mathrm{~km} / \mathrm{h}$. What force does the air exert on the parachute?
(a) 490.5 N
(b) 2000 N
(c) 245.25 N

Drag

Quiz

A 50 kg parachute descends at a steady $40 \mathrm{~km} / \mathrm{h}$. What force does the air exert on the parachute?

$$
\begin{aligned}
& \bar{v}=40 \mathrm{~km} / \mathrm{s} \quad \text { constant } \\
& \downarrow \\
& \begin{array}{l}
\downarrow \\
\bar{a}=0
\end{array} \\
& \downarrow \quad \bar{F}=m \bar{a} \\
& \bar{F}_{\text {net }}=0 \\
& \downarrow \\
& \bar{F}_{\text {drag }}=\bar{F}_{g} \\
& =m g=(50 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =490.5 \mathrm{~N}
\end{aligned}
$$

Drag

A 930 kg motorboat accelerates away from the dock at $2.3 \mathrm{~m} / \mathrm{s}^{2}$. Its propeller provides a 3.9 kN thrust force. What drag force does the water exert on the boat?
(a) $\quad 96.2 \mathrm{~N}$
(b) 5223 N
(c) $\quad 1.8 \mathrm{~N}$
(d) 1761 N

Drag

Quiz

A 930 kg motorboat accelerates away from the dock at $2.3 \mathrm{~m} / \mathrm{s}^{2}$. Its propeller provides a 3.9 kN thrust force. What drag force does the water exert on the boat?
horizontal Newton 2nd: $\bar{F}=m \bar{a}$
$F_{\text {thrust }}-F_{\text {drag }}=m a$

$$
F_{\text {drag }}=3900 \mathrm{~N}-(930 \mathrm{~kg})\left(2.3 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$$
=1761 \mathrm{~N}
$$

Forces

Quiz

A light inextensible (non-elastic) string passes over a smooth pulley which is accelerating vertically upwards at a rate a_{0}.

Masses m_{1} and m_{2} are attached to the ends of the string.
Find the acceleration of the masses.
(a) $\quad a=\frac{2 m_{1}}{a_{0}+g}$
(b) $\quad a=\left(m_{1}+m_{2}\right)\left(a_{0}+g\right)$
(c) $a=\frac{\left(m_{2}-m_{1}\right)\left(a_{0}+g\right)}{m_{1}+m_{2}}$
(d) $\quad a=\left(m_{1}+m_{2}\right) g$

Forces

Quiz

vertical Newton 2nd: $\bar{F}=m \bar{a}$
Left-hand arm:

$$
\begin{aligned}
& F_{T}-F_{1, g}=m_{1} a_{1} \\
& F_{T}=m_{1} g+m_{1}\left(a_{0}-a\right)
\end{aligned}
$$

Right-hand arm:

$$
\begin{aligned}
& F_{T}-F_{2, g}=m_{2} a_{2} \\
& F_{T}=m_{2} g+m_{2}\left(a_{0}+a\right) \\
& a=\frac{\left(m_{2}-m_{1}\right)\left(a_{0}+g\right)}{m_{1}+m_{2}}
\end{aligned}
$$

Science in the news

Science in the news

From 'New Scientist' science magazine:

NewScientist

Home | Space | Tech | News

Japan's huge magnetic net will trawl for space junk

) 22 January 2014 by Aviva Hope Rutkin
) Magazine issue 2953. Subscribe and save
) For similar stories, visit the Space flight Topic Guide

Gravity wasn't all fiction: tiny pieces of high-speed orbiting debris endanger our satellites. Now Japan is set to launch an electromagnetic net to catch them

SOMEWHERE in Earth's orbit, a satellite explodes into a terrifying cloud of debris. Moments later, Sandra Bullock and George Clooney are left scrambling to dodge the deadly space junk. This problem isn't confined to the Oscarnominated space thriller Gravity - scientists are struggling with it in real life. Now a rather unusual solution is being tested: a really big net.

Next month, the Japanese space agency, JAXA, will pilot its "electrodynamic tether" for the first time. It is one of many possible solutions that have been proposed to deal with space debris (see "Catch 'em, drag 'em, blast 'em").

Hundreds of thousands of pieces of spacecraft, satellites and other equipment from human spaceflight zip around our planet, some travelling faster than the speed of sound. According to a report released by the US Congressional

f Like	1.6 k	Tweet 98	8+1	118
+ Share	257			

What to look for

WHAT was discovered?

HOW was it done?

WHY is it exciting?

NEWS SCIENCE \& ENVIRONMENT

23 September 2011 Leat upsated at 17:03 GMT
Speed-of-light results under scrutiny at
Cern
■ Covments (Hes)
By Jason Palmer
somoe and bechnology reporter, BBC News

A meeting at Cern, the worlors largest physics lab, has addressed
results that suggest subatomic particles have gone faster than the speed of light
The team has published its work so other scientists can determine if the approach oontains any mistakes.

If it does not, one of the pllars of modern science may come tumbing down.

Artorio Erecitato acded "words of caution" to his Cem presentation bocause of the "potentially great impact on physics" of the result
The speed of light is widely heid to be the Universe's utimate speed imk. and much of modem physics - as laid out in part by Abert Einstein in H s and much of modem physics - as laid out in part by Abert Einsten in ins it

Thousands of experments have been undertaken to measure in ever more predsely, and no resul has ever spotted a particle breaking the lime.

Wo tried to find all possble emplorations for this," the reports author Artorio Erecitato of the Opera collaboration toid BBC News on Thurscay wenening.

We warted to find a mistake - trival mistakes, more complicates mistakes, or nasty effocts - and we clidn?

When you don't find anything, then you say well, now Im forcod to go out and ask the communily to sorutrise this'

Friday's meeting was designed to begin this process, whth hopes that other

Related Stories

Science in the news

Plans to launch of "Clean Space 1"

Science in the news

B|BC

Launch of "Clean Space 1"

Clean Space 1

When was the first satellite, Sputnik 1, launched?
(a) 50 years ago
(b) 55 years ago
(c) 57 years ago
(d) 62 years ago

Clean Space 1

How many pieces of space debris (garbage) orbit the Earth?
(a) $\sim 100,000$
(b) $\sim 500,000$
(c) $\sim 1,000,000$
(d) ~ 5,000,000

Clean Space 1

Where does space debris come from?
(a) Garbage from the space station
(b) Comets and asteroids from space
(c) Garbage from Earth sent into space
(d) Old rockets and satellites

Clean Space 1

Why is there so much space debris?
(a) Space station breaks apart satellites
(b) Many satellites launched
(c) Collisions between old satellites make many pieces
(d) The sun's rays break satellites into pieces

Clean Space 1

Why is space debris dangerous?
(a) it can hit current satellites and the space station
(b) it can block out the sun
(c) it can interfere with TV signals
(d) it can fall to Earth as a big meteor

Clean Space 1

How fast does the space debris move?
(a) $10,000 \mathrm{~km} / \mathrm{h}$
(b) $28,000 \mathrm{~km} / \mathrm{h}$
(c) $28,000 \mathrm{~m} / \mathrm{s}$
(d) 10,000 light years / month

Clean Space 1

When satellites collide, how many pieces of debris can be created?
(a) 100
(b) 500
(c) 2000
(d) 100,000

Clean Space 1

How many current satellites are there?
(a) 0.5 million
(b) 10,000
(c) 700
(d) 50

Clean Space 1

 QuizWhat will 'Clean space I' do with the old satellites?
(a) Return them to Earth
(b) Destroy them in space
(C) Pull them towards Earth, where the atmosphere will destroy them
(d) Pull them into the Sun, where the heat will destroy them

