Essential Physics I

$$
\begin{gathered}
\text { 英語で物理学の } \\
\text { エッセンス }
\end{gathered}
$$

Lecture 4：9－05－16

This lecture

Understand why circular motion does not have constant acceleration

Be able to calculate the orbit of a satellite

Know Newton's 3 force laws

Contradict conspiracy theories about the moon landing

Know your real weight

Calculate the motion of a flying pig

Review

Motion under gravity

HITGMSCORE

 SCORE
Motion can be split into components

Constant acceleration equations can be used on each component.

$$
v_{0, x}=v \cos \theta
$$

$$
v_{0, y}=v \sin \theta
$$

$$
\begin{aligned}
v_{x} & =v_{x, 0}+a_{x} t \\
x & =x_{0}+v_{x, 0} t+\frac{1}{2} a_{x} t^{2} \\
v_{x}^{2} & =v_{x, 0}^{2}+2 a_{x}\left(x-x_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
v_{y} & =v_{y, 0}+a_{y} t \\
y & =y_{0}+v_{y, 0} t+\frac{1}{2} a_{y} t^{2} \\
v_{y}^{2} & =v_{y, 0}^{2}+2 a_{y}\left(y-y_{0}\right)
\end{aligned}
$$

Circular motion

uniform motion

Is circular motion the same as projectile motion?

Circular motion

$\longrightarrow \bar{a} \quad$ acceleration vector
\}
Magnitude constant. Direction changes.

Circular motion

uniform motion

Is circular motion the same as projectile motion?

In both cases, acceleration magnitude is constant.
But in circular motion, the vector direction changes.
Therefore, no! Circular motion is different from projectile motion.
Circular motion acceleration is called the centripetal acceleration.

Circular motion

$\longrightarrow \bar{v} \quad$ velocity vector

Circular motion

uniform motion

What does the x-component of the velocity look like during one orbit?

Circular motion

uniform motion

Velocity components:

	Reset	
	Pause	
Slow motion		
Radius:	2.000	m
Period:	5.000	s
Mass:	1.000	kg
Position		
- Velocity		
Acceleration		
Force		
(c) W. Fendt 2007		

$$
v=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

Circular motion

uniform motion

Position components:

$$
1 \mathrm{~m}
$$

Position:

$\begin{array}{ll}\mathbf{x}=-0.718 \mathrm{~m} & \text { (x component) } \\ y=1.87 \mathrm{~m} & \text { (y component) }\end{array}$

$$
r=\sqrt{x^{2}+y^{2}}
$$

Circular motion

uniform motion

$$
\begin{array}{r}
\left|\bar{r}_{1}\right|=\left|\bar{r}_{2}\right|=r \\
\left|\bar{v}_{1}\right|=\left|\bar{v}_{2}\right|=v \\
\bar{r}_{1} \neq \bar{r}_{2} \\
\bar{v}_{1} \neq \bar{v}_{2}
\end{array}
$$

From diagram:

and since \bar{v} is perpendicular (90° angle) to \bar{r} :

$$
\frac{\Delta v}{v}=\frac{\Delta r}{r}
$$

Circular motion

 uniform motionIf θ is small, $\Delta r \simeq s$, curve distance between P_{1} and P_{2}.
$s=$ distance travelled in time, Δt

$$
=v \Delta t
$$

Therefore:

$$
\frac{\Delta v}{v}=\frac{\Delta r}{r} \simeq \frac{v \Delta t}{r}
$$

$$
\frac{\Delta v}{\Delta t} \simeq \frac{v^{2}}{r}
$$

uniform circular motion

Circular motion

Example

A satellite at altitude 300 km has a period $\mathrm{T}=1.5 \mathrm{~h}$. What is its centripetal acceleration?
height above planet surface

Time for 1 orbit around planet

Circular motion

Example

A satellite at altitude 300 km has a period $\mathrm{T}=\mathrm{I} .5 \mathrm{~h}$. What is its centripetal acceleration?

$$
\begin{aligned}
r & =R_{E}+\text { altitude } \\
& =\left(6.37 \times 10^{6} \mathrm{~m}\right)+(300 \mathrm{~km}) \times \frac{1 \times 10^{3} \mathrm{~m}}{1 \mathrm{~km}} \\
& =6.67 \times 10^{6} \mathrm{~m}
\end{aligned}
$$

one orbit $=2 \pi r=2 \pi\left(6.67 \times 10^{6}\right) \mathrm{m}$

$$
T=1.5 \mathrm{~h}=1.5 \mathrm{~h} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}} \mathrm{~s}
$$

$a=\frac{v^{2}}{r}=\frac{4 \pi^{2} r}{T^{2}}=9.0 \mathrm{~m} / \mathrm{s}^{2}$
Why not $9.81 \mathrm{~m} / \mathrm{s}^{2}$?

Circular motion

A tethered ball moves in a horizontal circle of radius 2 m . It makes one revolution in 3 s .

Find its acceleration.

Circular motion

A tethered ball moves in a horizontal circle of radius 2 m . It makes one revolution in 3 s .

Find its acceleration.
(a) $8.76 \mathrm{~m} / \mathrm{s}^{2}$ direction outwards
(b) $8.76 \mathrm{~m} / \mathrm{s}^{2}$ direction inwards
(c) $8.76 \mathrm{~m} / \mathrm{s}^{2}$ direction same as velocity
(d) $62.3 \mathrm{~m} / \mathrm{s}^{2}$ direction outwards
(e) $62.3 \mathrm{~m} / \mathrm{s}^{2}$ direction inwards
(f) $62.3 \mathrm{~m} / \mathrm{s}^{2}$ direction same as velocity

Circular motion

A tethered ball moves in a horizontal circle of radius 2 m . It makes one revolution in 3 s .

Find its acceleration.

$$
\begin{aligned}
& v=\frac{2 \pi r}{T}=\frac{2 \pi(2 \mathrm{~m})}{3 \mathrm{~s}}=4.19 \mathrm{~m} / \mathrm{s} \\
& a=\frac{v^{2}}{r}=\frac{(4.19 \mathrm{~m} / \mathrm{s})^{2}}{2 \mathrm{~m}}=8.76 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Forces

Forces

Forces change motion:

Forces are vectors:

can be added

Forces

Rules for forces

Newton's First Law

"A body in uniform motion remains in uniform motion, and a body at rest remains at rest, unless acted on by a nonzero net force."

If you don't change it, it won't change

Forces

Newton's First Law

But a rolling ball comes to a stop.Why?
(A) there always has to be a continual force to keep moving
(B) there is a force acting that stops the ball
(C) because "rolling" is a different kind of motion
(D) Newton's laws don't always apply

Forces

Newton's First Law

If the Earth disappeared, what path would the moon follow?
(A) continue on red path
(B) move on green path
(C) move on blue path
(D) stop

Forces

Newton's First Law

Circular motion is not uniform.
$\bar{r}, \bar{v}, \bar{a}$ vectors change direction continuously.

Therefore, circular motion requires a net force.

The moon would move with the velocity it had at the point the Earth vanished.

Forces

Rules for forces

Newton's First Law

If Newton's first law applies, we are in an inertial reference frame.
Rotating frames are not inertial.

A car moving at a constant velocity is an inertial frame.

Newton's laws will hold inside and outside the car.

Experiments done inside and outside the car will give the same result.

Forces

Apollo II landed on the moon in I969.
Some people have claimed the moon landing was fake.

One reason they give is that the American flag waves, yet there is no wind on the moon.

Why is this reason invalid?

(A) There is wind on the moon.

The flag moves as the astronauts set it down, and doesn't stop.
(C) Oh my God!

There was no moon landing!
(D) The flag doesn't wave, the video was bad.

Forces

Newton's 2nd Law

"The rate at which a body's momentum changes is equal to the net force acting on the body."

Quantifies the effect of force on motion.

The effect of a force depends on an object's mass and velocity
The product of mass and velocity is momentum $\bar{p}=m \bar{v}$
multiply

$$
\bar{F}_{\mathrm{net}}=\frac{d \bar{p}}{d t}=\frac{(m \bar{v})}{d t}=m \frac{d \bar{v}}{d t}=m \bar{a}
$$

Forces

Rules for forces

Newton's 2nd Law $\quad \bar{F}_{\text {net }}=m \bar{a}$
If $\bar{F}_{\text {net }}=0$, then $\bar{a}=0$

Newton's First Law

Nobody likes change.... The resistance to movement is called inertia.
The more difficult it is to change the motion of an object the more inertia it has.
$\bar{a}=\frac{\bar{F}_{\mathrm{net}}}{m}$
Forces have a smaller effect if the mass is big
mass measures inertia

Forces

Newton's 2nd Law
A force produces an acceleration of $150 \mathrm{~m} / \mathrm{s}^{2}$

The same force gives a 2 nd can an acceleration of $50 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the second can?

Forces

Newton's 2nd Law
$150 \mathrm{~m} / \mathrm{s}^{2}$
$50 \mathrm{~m} / \mathrm{s}^{2}$

The same force gives a 2 nd can an acceleration of $50 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the second can?
(a) 0.005 kg
(b) 0.015 kg
(c) 0.045 kg
(d) 22.2 kg

Forces

Newton's 2nd Law
$150 \mathrm{~m} / \mathrm{s}^{2}$
$50 \mathrm{~m} / \mathrm{s}^{2}$

The same force gives a 2 nd can an acceleration of $50 \mathrm{~m} / \mathrm{s}^{2}$. What is the mass of the second can?
$\bar{F}=m_{1} \bar{a}_{1}=m_{2} \bar{a}_{2}$
$0.015 \mathrm{~kg} \times 150 \mathrm{~m} / \mathrm{s}^{2}=m_{2} \times 50 \mathrm{~m} / \mathrm{s}^{2}$
$m_{2}=\frac{0.015 \mathrm{~kg} \times 150 \mathrm{~m} / \mathrm{s}^{2}}{50 \mathrm{~m} / \mathrm{s}^{2}}$

Forces

Example

Newton's 2nd Law

A particle of mass 0.4 kg is subjected to 2 forces, $\bar{F}_{1}=2 \mathrm{~N} \bar{i}-4 \mathrm{~N} \bar{j}$ and $\bar{F}_{2}=-2.6 \mathrm{~N} \bar{i}+5 \mathrm{~N} \bar{j}$.

Particle starts from rest $(v=0)$ at the origin $(x=0)$ at $t=0$, find its position and velocity at $t=1.6 \mathrm{~s}$

Forces

Example

Newton's 2nd Law

How to solve:

motion from a constant force

Use $\bar{F}_{\text {net }}=m \bar{a}: \quad$ constant force

constant
 acceleration

$$
\begin{aligned}
v & =v_{o}+a t \\
x & =x_{o}+v_{o} t+\frac{1}{2} a t^{2} \\
v^{2} & =v_{o}^{2}+2 a\left(x-x_{o}\right)
\end{aligned}
$$

Forces

Example

Newton's 2nd Law

A particle of mass 0.4 kg is subjected to 2 forces, $\bar{F}_{1}=2 \mathrm{~N} \bar{i}-4 \mathrm{~N} \bar{j}$ and $\bar{F}_{2}=-2.6 \mathrm{~N} \bar{i}+5 \mathrm{~N} \bar{j}$.

Particle starts from rest $(v=0)$ at the origin $(x=0)$ at $t=0$, find its position and velocity at $t=1.6 \mathrm{~s}$

Net force: $\quad \bar{F}_{\text {net }}=\bar{F}_{1}+\bar{F}_{2}=(2 \mathrm{~N} \bar{i}-4 \mathrm{~N} \bar{j})+(-2.6 \mathrm{~N} \bar{i}+5 \mathrm{~N} \bar{j})$

$$
=-0.6 \mathrm{~N} \bar{i}+1.0 \mathrm{~N} \bar{j}
$$

From Newton's 2nd:

$$
\bar{a}=\frac{\bar{F}_{\text {net }}}{m}=\frac{-0.6 \mathrm{~N} \bar{i}+1.0 \mathrm{~N} \bar{j}}{0.4 \mathrm{~kg}}
$$

$$
\text { or } a_{x}=-1.5 \mathrm{~m} / \mathrm{s}^{2} \text { and } a_{y}=2.5 \mathrm{~m} / \mathrm{s}^{2}
$$

Forces

Example

Newton's 2nd Law $\quad a_{x}=-1.5 \mathrm{~m} / \mathrm{s}^{2}, a_{y}=2.5 \mathrm{~m} / \mathrm{s}^{2}$

Horizontal:

$$
\begin{aligned}
& x=x . v_{x} / 0 t+\frac{1}{2} a_{x} t^{2}=\frac{1}{2}\left(-1.5 \mathrm{~m} / \mathrm{s}^{2}\right)(1.6 \mathrm{~s})^{2}=-1.92 \mathrm{~m} \\
& 000 \\
& v_{x}=v_{y}, 0+a_{x} t=\left(-1.5 \mathrm{~m} / \mathrm{s}^{2}\right)(1.6 \mathrm{~s})=-2.40 \mathrm{~m} / \mathrm{s} \\
& 0
\end{aligned}
$$

Vertical:

$$
\begin{aligned}
& y=y_{0}+v_{0}, 0 t+\frac{1}{2} a_{y} t^{2}=\frac{1}{2}\left(2.5 \mathrm{~m} / \mathrm{s}^{2}\right)(1.6 \mathrm{~s})^{2}=3.20 \mathrm{~m} \\
& v_{y}=v_{2 x}, 0+a_{y} t=\left(2.5 \mathrm{~m} / \mathrm{s}^{2}\right)(1.6 \mathrm{~s})=4.00 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example
Newton's 2nd Law

Position: $\quad-1.92 \bar{i}+3.20 \bar{j} \quad \mathrm{~m}$

Velocity: $\quad \bar{v}=-2.40 \bar{i}+4.00 \bar{j} \mathrm{~m} / \mathrm{s}$

Forces

Rules for forces

Newton's 3rd Law
"If object A exerts a force on object B, then object B exerts an oppositely directed force of equal magnitude on A "

Forces come in pairs:
If I push you with a force F, then I feel a force F on me

If you kick a bowling ball, it hurts!

Forces

Rules for forces

Newton's 3rd Law
Strange but true (and sad...!)

You weigh more than you think

Gravity pulls you down
But when you stand on the scales, they exert an upwards force on you.
$\bar{F}_{\text {net }}=\bar{F}_{g}+\bar{F}_{\text {scale }}$ weight
"the normal force", \bar{n}

Forces

How different is your weight?

$$
\frac{\bar{F}_{g}}{\bar{F}_{\text {scale }}}=\text { ? }
$$

$\bar{F}_{\text {net }}=\bar{F}_{g}+\bar{F}_{\text {scale }}$
Newton's 2nd law: $\bar{F}_{\text {net }}=m \bar{a} \quad$ Circular motion: $a=\frac{v^{2}}{r}$
Gravitational force: $\quad \bar{F}_{g}=-m g \quad g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Earth's radius: $\quad R_{E}=6.37 \times 10^{6} \mathrm{~m} \quad I$ orbit $=I$ day
Is the answer closest to:
(a) 10%
(b) 1%
(c) 0.1%
(d) 0.01%

Forces

How different is your weight?

$$
\frac{\bar{F}_{g}}{\bar{F}_{\text {scale }}}=?
$$

$$
\bar{F}_{\text {scale }}=m g-m \frac{v^{2}}{r}
$$

$$
v=\frac{\text { distance }}{\text { time }}=\frac{2 \pi r}{24 \times 3600 \mathrm{~s}}
$$

$$
\bar{F}_{\text {scale }}=m g-\frac{m}{r}\left(\frac{2 \pi r}{24 \times 3600 \mathrm{~s}}\right)^{2}=m g-m r\left(\frac{2 \pi}{24 \times 3600 \mathrm{~s}}\right)^{2}
$$

Forces

How different is your weight?

$$
\frac{\bar{F}_{g}}{\bar{F}_{\text {scale }}}=?
$$

$$
\frac{\bar{F}_{g}}{\bar{F}_{\text {scale }}}=\frac{m g}{m g-m r\left(\frac{2 \pi}{24 \times 3600 \mathrm{~s}}\right)^{2}}=0.0034=0.34 \%
$$

Forces + Circular Motion

The flying pig (conical pendulum)

What is the time for one orbit?

Forces + Circular Motion

The flying pig (conical pendulum)

What is the time for one orbit?

Forces + Circular Motion

What do we know?

Motion is horizontal, so no net vertical acceleration: $a_{\mathrm{y}, \text { net }}=0$
But there is centripetal acceleration: $a_{\mathrm{x}, \text { net }}=\bar{a}_{c}$

Forces + Circular Motion

Circular motion: $\quad a_{\mathrm{x}, \mathrm{net}}=\bar{a}_{c}=\frac{v^{2}}{r}$

$$
a_{\mathrm{x}, \mathrm{net}}=r\left(\frac{2 \pi}{T}\right)^{2}=D \sin \theta\left(\frac{2 \pi}{T}\right)^{2}
$$

Therefore: $\quad T=2 \pi \sqrt{\frac{D \sin \theta}{a_{\mathrm{x}, \text { net }}}}$
So, if we know $a_{\mathrm{x}, \text { net }}$ we'd have the period.

Let's look at Newton's 2nd law....

Forces + Circular Motion

\bar{F}_{g}
Gravity
(same direction
as acceleration)
Forces
Net force
\bar{F}_{g}

String
\bar{F}_{s}

Wing lift
\bar{F}_{1}

Since force is a vector, we can look at each component

Forces + Circular Motion

horizontal $\bar{F}=m \bar{a}$ net force $=\left(F_{\mathrm{s}}+F_{l}\right) \sin \theta=m a_{\mathrm{x}, \text { net }}$
vertical $\quad \bar{F}=m \bar{a}$
$\left(F_{s}+F_{l}\right) \cos \theta-F_{g}=0$
vertical $\bar{F}=m \bar{a}$
$\left(F_{s}+F_{l}\right) \cos \theta-F_{g}=0$

$$
\left(F_{\mathrm{s}}+F_{l}\right)=\frac{F_{g}}{\cos \theta}
$$

$D \sin \theta$

$$
\begin{aligned}
& F_{g} \frac{\sin \theta}{\cos \theta}=m a_{\mathrm{x}, \text { net }} \quad \longrightarrow a_{\mathrm{x}, \text { net }}=\frac{F_{g} \tan \theta}{m} \underset{\uparrow}{=} g \tan \theta \\
& F_{g}=m g
\end{aligned}
$$

Forces + Circular Motion

From:

$$
\begin{aligned}
& T=2 \pi \sqrt{\frac{D \sin \theta}{a_{\mathrm{x}, \text { net }}}} \\
& a_{\mathrm{x}, \text { net }}=g \tan \theta
\end{aligned}
$$

$$
\begin{aligned}
T & =2 \pi \sqrt{\frac{D \cos \theta}{g}} \\
& =2 \pi \sqrt{\frac{0.97 \mathrm{~m} \cos 37^{\circ}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}}=1.8 \mathrm{~s}
\end{aligned}
$$

Problem solving

(I) Draw a diagram
(2) Balance the forces
(3) Consider each component
(4) Get full marks

$$
\begin{aligned}
& F_{x, \text { net }}=m a_{x} \\
& v_{x}=v_{x, 0}+a_{x} t \\
& x=x_{0}+v_{x, 0} t+\frac{1}{2} a_{x} t^{2} \\
& v_{x}^{2}=v_{x, 0}^{2}+2 a_{x}\left(x-x_{0}\right)
\end{aligned}
$$

$$
F_{\mathrm{y}, \text { net }}=m a_{y}
$$

$$
\begin{aligned}
v_{y} & =v_{y, 0}+a_{y} t \\
y & =y_{0}+v_{y, 0} t+\frac{1}{2} a_{y} t^{2} \\
v_{y}^{2} & =v_{y, 0}^{2}+2 a_{y}\left(y-y_{0}\right)
\end{aligned}
$$

$$
a=\frac{v^{2}}{r}
$$

Problem solving

A 2 kg picture is hung by 2 wires of equal length.
Each makes an angle $\theta=30^{\circ}$ with the horizontal.
Find the tension in the wires.
(a) 0 N
(b) 9.81 N
(c) 39.21 N
(d) 19.62 N

Problem solving

A 2 kg picture is hung by 2 wires of equal length.
Each makes an angle $\theta=30^{\circ}$ with the horizontal.
Find the tension in the wires.
vertical $\quad \bar{F}=m \bar{a}$
$F_{g}=T \sin \theta+T \sin \theta=m g$
$T=\frac{m g}{2 \sin 30^{\circ}}=\frac{2 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}}{2 \sin 30^{\circ}}$
$=19.62 \mathrm{~N}$

Forces + Circular Motion quiz

A bucket of water is whirled in a vertical circle of radius, r.

Forces + Circular Motion

A bucket of water is whirled in a vertical circle of radius, r.
If its speed is v_{t} at the top of the circle, find the force (as an expression)exerted on the water, \bar{F}_{p}, by the bucket at the top of the circle.

If $r=1 m$, what is the minimum v_{t} for which the water will remain in the bucket?

$$
\begin{aligned}
& \bar{F}_{p}=? \\
& \bar{v}_{t, \min }=?
\end{aligned}
$$

Forces + Circular Motion

A bucket of water is whirled in a vertical circle of radius, r.
If its speed is v_{t} at the top of the circle, find the force (as an expression)exerted on the water, \bar{F}_{p}, by the bucket at the top of the circle.

If $r=1 m$, what is the minimum v_{t} for which the water will remain in the bucket?
(a) $\bar{v}_{t, \text { min }}=6.21 \mathrm{~m} / \mathrm{s}$
(b) $\bar{v}_{t, \min }=5.4 \mathrm{~m} / \mathrm{s}$
(c) $\bar{v}_{t, \min }=1.24 \mathrm{~m} / \mathrm{s}$
(d) $\bar{v}_{t, \min }=3.13 \mathrm{~m} / \mathrm{s}$

Forces + Circular Motion quiz

vertical $\quad \bar{F}=m \bar{a}$

$$
F_{p}+F_{g}=m \frac{v_{t}^{2}}{r}
$$

$$
\Rightarrow F_{p}=m \frac{v_{t}^{2}}{r}-m g \rightarrow \text { constant }
$$

If $v_{t} \uparrow F_{p} \uparrow \quad$ If $v_{t} \downarrow F_{p} \downarrow$
Since F_{p} cannot exert upwards force on the bucket, minimum OK speed at top is when $F_{p}=0$.

$$
\overline{\mathrm{m}}=3.13 \mathrm{~m} / \mathrm{s}
$$

Physics in the World

NEWS SCIENCE \& ENVIRONMENT
 Home UK | Africa Asia | Europe | Latin America |Mid-East | US \& Canada| Business Health Sci/Environ

Skydiver Felix Baumgartner on track for

 super jump

Motion in ID

Constant acceleration

What to look for

WHAT was discovered?

HOW was it done?

WHY is it exciting?

Skydive

Skydive from $71,500 \mathrm{ft}$

Austrian skydiver Felix Baumgartner is well on the way to setting a world record for the highest free-fall iump.

On Thursday, the adventurer leapt from a balloon-borne capsule 71,500tt (22km) above New Mexico, landing safely eight minutes later.

The dive was intended to test all his equipment before he tries to free-fall from $120,000 f t$ later this year.

In doing so, he would better the mark of 102,800ft set by US Air Force Colonel Joe Kittinger in 1960.

Even just Thursday's jump puts Baumgartner in a select group as only Kittinger and Russian Eugene Andreev have descended from higher.

Baumgartner, who is famous for stunts such as jumping off the Petronas Towers, is seen in the special pressure suit he must wear to stay alive in the thin air and extreme cold of the stratosphere.

Skydive

WHY
Practice for world record skydive

Already \#3 in the world

Austrian skydiver Felix Baumgartner is well on the way to setting a world record for the highest free-fall jump.

On Thursday, the adventurer leapt from a balloon-borne capsule $71,500 \mathrm{ft}$ (22km) above New Mexico, landina safelv eiaht minutes later.

The dive was intended to test all his equipment before he tries to free-fall from 120,000ft later this year.

In doing so, he would better the mark of 102,800ft set by US Air Force Colonel Joe Kittinger in 1960

Even just Thursday's jump puts Baumgartner in a select group as only Kittinger and Russian Eugene Andreev have descended from higher.

Baumgartner, who is famous for stunts such as jumping off the Petronas Towers, is seen in the special pressure suit he must wear to stay alive in the thin air and extreme cold of the stratosphere.

Skydive

during the descent, and was in free fall for three minutes and 43 seconds before opening his parachute. From capsule to ground, the entire jump lasted eight minutes and eight seconds.

8 minute 8 second jump with top speed, 364 mph .

Skydive

```
The 42-year-old was quoted afterwards as saying that the cold was hard to
handle.
"I could hardly move my hands. We're going to have to do some work on
that aspect," he said.
The Austrian also said the extraordinary dimensions of the high
atmosphere took some getting used to: "I wanted to open the parachute
after descending for a while but I noticed that I was still at an altitude of
50,000ft."
```

Not easy!
Cold may still be a problem on the big jump

Skydive

Summary

Skydiver Felix Baumgartner jumped from 71,500 ft.

This was a practice for a world record attempt.

This jump was the 3rd highest ever attempted.

The jump lasted 8 minute 8 seconds with a top speed of 364 mph .

Skydive

Abstract

His Red Bull Stratos team estimates he reached $364 \mathrm{mph}(586 \mathrm{~km} / \mathrm{h}$) during the descent, and was in free fall for three minutes and 43 seconds before opening his parachute. From capsule to ground, the entire jump lasted eight minutes and eight seconds.

Estimate the acceleration

(a) $\quad a=170 \mathrm{~m} / \mathrm{s}^{2}$
(b) $\quad a=9.81 \mathrm{~m} / \mathrm{s}^{2}$
(c) $\quad a=2.63 \mathrm{~m} / \mathrm{s}^{2}$
(d) $a=0.73 \mathrm{~m} / \mathrm{s}^{2}$

SKroive

Abstract

His Red Bull Stratos team estimates he reached $364 \mathrm{mph}(586 \mathrm{~km} / \mathrm{h})$ during the descent, and was in free fall for three minutes and 43 seconds before opening his parachute. From capsule to ground, the entire jump lasted eight minutes and eight seconds.

Estimate the acceleration

$$
a_{\text {average }}=\frac{\Delta v}{\Delta t}
$$

$$
\Delta v=586 \frac{\mathrm{~km}}{\mathrm{~h}}=\left(586 \frac{\mathrm{~km}}{\mathrm{~h}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=163 \mathrm{~m} / \mathrm{s}
$$

$$
\Delta t=3 \min +43 \mathrm{~s}=(3 \mathrm{~min})\left(\frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right)+43 \mathrm{~s}=223 \mathrm{~s}
$$

$$
a=\frac{163 \mathrm{~m} / \mathrm{s}}{223 \mathrm{~s}}=0.73 \mathrm{~m} / \mathrm{s}^{2}
$$

Skydive

His Red Bull Stratos team estimates he reached $364 \mathrm{mph}(586 \mathrm{~km} / \mathrm{h})$ during the descent, and was in free fall for three minutes and 43 seconds before opening his parachute. From capsule to ground, the entire jump lasted eight minutes and eight seconds.

Why is $a \neq 9.81 \mathrm{~m} / \mathrm{s}^{2} ?$

(a) There is a mistake in this article
(b) A second force is acting
(c) Gravity is not constant so high up
(d) Equations do not apply in real life

Skydive

When a massive star $\left(\sim 1.4-3 \times M_{\text {sun }}\right)$ dies, it can leave a neutron star.

Neutron stars are massive but tiny!
Gravitational acceleration is therefore HUGE

$$
g_{\text {neutron }} \sim 10^{12} \mathrm{~m} / \mathrm{s}^{2}
$$

If Felix jumped from 22 km above the surface of a neutron star, how long until he hit the star?
(a) I day
(b) I minute
(c) I second
(d) I millisecond

Skydive

When a massive star ($\sim 1.4-3 \times M_{\text {sun }}$) dies, it can leave a neutron star.

Neutron stars are massive but tiny!
Gravitational acceleration is therefore HUGE

$$
g_{\text {neutron }} \sim 10^{12} \mathrm{~m} / \mathrm{s}^{2}
$$

$y=y_{0}+v_{y, 0} t+\frac{1}{2} a_{y} t^{2}$
$0=22,000+0 t+\frac{1}{2}\left(-10^{12}\right) t^{2}$
$t=0.2 \mathrm{~ms}$

This lecture

Understand why circular motion does not have constant acceleration

Be able to calculate the orbit of a satellite

Know Newton's 3 force laws

Contradict conspiracy theories about the moon landing

Know your real weight

Calculate the motion of a flying pig

