Essential Physics I

英語で物理学の
エッセンス I

News

Tomorrow！

Public science talk in English

On star tables found in Egyptian coffins

Central library，media court 5：30－6：30 pm
http：／／www．sci．hokudai．ac．jp／ international／project／sci－tech－talk／

Course

If you see this．．．

Course ID：EP12016TASKER3e

（And check the webpage）

News

［22－04－2016］If you purchased the new 3rd edition of＂Essential University Physics＂textbook，you may see this error on the MasteringPhysics system：
「Essential University Physics」の教科書（3版）を貫いましたら，「MasteringPhysics」でたぶんエラーメッセージを受け
るでしょう。
Welcome to MasteringPhysics
Join Your Onlline Course
ons you neckien © Course 10 toom your instucter？
© Yes ono
緲cuacionelp？

違う「Course ID」を使おうとしてください：EP12016TASKER3e

Course

On http://www.masteringphysics.com

If you see this error:

You must configure your browser to allow popup windows for this site

OOURSe

Course

On http://www.masteringphysics.com
If you see this error:

You must configure your browser to allow popup windows for this site
\checkmark Block pop-up windows
e.g. firefox

Course

Homework on

http://www.masteringphysics.com

Access code (from textbook) needed

Not here last week?
See me after class.

Course

Usually,

Homework is due the following lecture.

(1 week)

But, because last week was the 1st week...

1st homework is due 2016/05/02

2016								APRIL		
					1	2				
SUN	MON	TUE	WED	THU	FRI					
3	4	5	6	7	8	9				
10	11	12	13	14	15	16				
17	18	19	20	21	22	23				

2016 APRIL

Course

This week＇s homework is also due next lecture．．．
week I and week 2 homework due next week来週に宿題1と宿題2 を出してください。

This lecture

Units

Motion in 1D

This lecture

Know why units are important

Convert (change) between units

Use scientific notation for large and small numbers

Understand the difference between speed and velocity

Calculate average and instantaneous velocity and acceleration

Use equations for constant acceleration

Units

Units

Why are units important?

If we don't use units...
numbers have no meaning e.g. This bomb will explode in...

$$
\text { Answer = } 3
$$

Answer = 3 seconds
and the wrong units can be a disaster!

Units

Why are units important?

1998-I2-II: NASA launched the

Aim: Study Mars's climate while orbiting above the planet.

It travelled for 9 months...
... travelled 4I5,000,000 miles to reach Mars.

Then, something went wrong....

Units

Why are units important?

Instead of orbiting Mars at height of 180 km ...
... it orbited at only 60 km ...
... and entered Mars's atmosphere ...
... which it wasn't built to do.

The spacecraft was burned \& destroyed.

Units

Why are units important?

What went wrong?

The spacecraft's direction was changed by the force (F) from its engines.

The engineers measured this force in pounds (lb)
.... but the flight controllers measured the force in Newtons (N).

Since $\mathrm{I} \mathrm{lb}=4.45$ Newtons, $4.45 \times$ the correct force was used.

Units

Since I lb = 4.45 Newtons, $4.45 \times$ the correct force was used.

Units

Average man's height in Japan
67.4 inches

Tokyo Skytree 634 metres

Units

Bacteria 2 micrometers

Average distance to the moon from Earth

238,855 miles

Whitney Mountain, USA

4418 metres

CN Tower, Toronto

1,815 feet Hydrogen atom

Units

Mount Fuji 12,388 feet

Deepest point in the ocean

Odori
 Park

Units

Average man's height in Japan

Bacteria 2 micrometers
Average distance to the moon from Earth

238,855 miles

Whitney Mountain, USA

4418 metres

Radius of the

Hydrogen atom
0.53 angstrom

Deepest point in the ocean

CN Tower, Toronto

I,8I5 feet

Mount Fuji 12,388 feet

Odori
Park
1,640 yards

Units

Which is the 3rd tallest?
(A) Mount Fuji
(B) Deepest point in the ocean
(C) Tokyo Skytree
(D) Whitney Mountain
(E) Odori Park

Units

Average man's height in Japan

Bacteria 2 micrometers

Whitney Mountain, USA

Ave rage distance to the moon from Earth

238,855 miles

CN Tower,

 Toronto
Mount Fuji 12,388 feet

Odori
Park

Units

Average distance to the moon from Earth

238,855 miles

Whitney Mountain, USA

Deepest point in the ocean

5966 fathom

Odori Park
 I,640 yards

Mount Fuji 12,388 feet
4418 metres

Tokyo Skytree 634 metres
CN Tower, Toronto

I,8I5 feet

Bacteria 2 micrometers

Average man's height in Japan
67.4 inches

Radius of the Hydrogen atom

Units

Which is the 3rd tallest?
(A) Mount Fuji
(B) Deepest point in the ocean
(C) Tokyo Skytree
(D) Whitney Mountain
(E) Odori Park

Units

MUCH easier if we all use the same units

The 'Systeme International d'Unites'
(International System of Units): SI

Length

Time

Mass

metres [m]

seconds [s]
kilograms [kg]
kelvin [K]

Units

Average distance to the moon from Earth

238,855 miles

Whitney Mountain, USA

Deepest point in the ocean

5966 fathom

Odori Park
 I,640 yards

Mount Fuji 12,388 feet
4418 metres

Tokyo Skytree 634 metres
CN Tower, Toronto

I,8I5 feet

Bacteria 2 micrometers

Average man's height in Japan
67.4 inches

Radius of the Hydrogen atom

Units

Average distance to the moon from Earth

$384,400,000 \mathrm{~m}$

Whitney Mountain, USA

Deepest point in the ocean

Odori Park

I,500 m
Mount Fuji $\quad 3,776$ m

Tokyo Skytree
634 m

Average man's height in Japan
1.71 m

Radius of the 0.000000000053 m Hydrogen atom

Units

Calculating units

Units can be calculated like algebra:

$$
x=v \times t
$$

distance $=$ velocity \times time

$$
\begin{aligned}
& =\left(\frac{80 \mathrm{~km}}{\mathrm{~h}}\right) \times 3 \mathrm{~h} \\
& =240 ?
\end{aligned}
$$

$\longrightarrow 80 \mathrm{~km} / \mathrm{h}$

Units

Calculating units

Units can be calculated like algebra:

$$
x=v \times t
$$

distance $=$ velocity \times time

$$
\begin{aligned}
& =\left(\frac{80 \mathrm{~km}}{h}\right) \times 3 \mathrm{~h} \\
& =240 \mathrm{~km}
\end{aligned}
$$

Units

Calculating units

Calculate: $\quad a=\frac{v}{t} \quad$ for: $\quad \begin{aligned} v & =6 \mathrm{~m} / \mathrm{s} \\ t & =3 \mathrm{~s}\end{aligned}$
(A) $\quad a=2 \mathrm{~m}$
(B) $a=2 \mathrm{~m} / \mathrm{s}^{2}$
$a=\frac{6 \mathrm{~m} / \mathrm{s}}{3 \mathrm{~s}}$
(C) $a=2 \mathrm{~m} / \mathrm{s}$

$$
=\frac{6}{3} \frac{\mathrm{~m}}{\mathrm{~s} \times \mathrm{s}}=2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

(D) $\quad a=2 \mathrm{~s}$

Units

Calculating units

Calculate: $\quad E=\frac{1}{2} \mathrm{mv}^{2} \quad$ for: $\quad m=10 \mathrm{~kg}$

$$
v=2 \mathrm{~m} / \mathrm{s}
$$

(A) $E=20 \mathrm{~kg} \mathrm{~s}^{2}$
(B) $E=20 \mathrm{~kg} \mathrm{~s}^{2} / \mathrm{m}^{2}$
(C) $E=20 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
E & =\frac{1}{2}(10 \mathrm{~kg})(2 \mathrm{~m} / \mathrm{s})^{2} \\
& =20 \frac{\mathrm{kgm}^{2}}{\mathrm{~s}^{2}}
\end{aligned}
$$

(D) $E=20 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}^{2}$

Also called the 'Joule' : J

Units

Changing units

$x=v \times t=240 \mathrm{~km}$
But what if we wanted miles?

$$
\left.\begin{array}{rl}
1 \mathrm{mi} & =1.61 \mathrm{~km} \\
\left(\frac{1 \mathrm{mi}}{1.61 \mathrm{~km}}\right) & =\left(\frac{1.61 \mathrm{~km}}{1.61 \mathrm{l}}\right)
\end{array}\right) \div 1.61 \mathrm{~km}
$$

$\left(\frac{1 \mathrm{mi}}{1.61 \mathrm{~km}}\right)=1 \quad$... we can $\times 1$ by anything

Units

Changing units
$x=v \times t=240 \mathrm{~km}$
But what if we wanted miles?

$$
\begin{aligned}
x & =v \times t \\
& =\left(\frac{80 \mathrm{~km}}{\mathrm{~h}}\right) \times 3 \mathrm{~h} \\
& =240 \mathrm{~km} \times\left(\frac{1 \mathrm{mi}}{1.61 \mathrm{~km}}\right)
\end{aligned}
$$

Units

Changing units

$x=v \times t=240 \mathrm{~km}$
But what if we wanted miles?

$$
\begin{aligned}
x & =v \times t \\
& =\left(\frac{80 \mathrm{~km}}{\mathrm{~h}}\right) \times 3 \mathrm{~h}
\end{aligned}
$$

$$
=240 \mathrm{~km} \times\left(\frac{1 \mathrm{mi}}{1.61 \mathrm{~km}}\right)=\left(\frac{240 \times 1 \mathrm{mi}}{1.61}\right)=149 \mathrm{mi}
$$

Units

(Changing units

Change 65 miles / hour to m / s

(A) $29 \mathrm{~m} / \mathrm{s}$

1 mile $=1.61 \mathrm{~km}$

(B) $104.65 \mathrm{~m} / \mathrm{s}$
(C) $40.4 \mathrm{~m} / \mathrm{s}$
(D) $1.74 \mathrm{~m} / \mathrm{s}$

Units

Changing units

Change 65 miles / hour to m / s

1 mile $=1.61 \mathrm{~km}$

$$
\div 1 \text { mile }
$$

$$
\frac{1 \mathrm{mile}}{1 \mathrm{mile}}=\frac{1.61 \mathrm{~km}}{1 \mathrm{mile}}
$$

$$
1=\frac{1.61 \mathrm{~km}}{1 \mathrm{mile}}
$$

$$
65 \frac{\text { míle }}{\text { hour }} \times\left(\frac{1.61 \mathrm{~km}}{1 \mathrm{~m} \text { íe }}\right)=104.65 \mathrm{~km} / \text { hour }
$$

Units

Changing units

Change 65 miles / hour to m / s

$$
\begin{aligned}
1 \mathrm{~km} & =1000 \mathrm{~m} \\
\frac{1 \mathrm{~km}}{1 \mathrm{~km}} & =\frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \\
1 & =\frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \\
104.65 & \frac{\mathrm{k} / \mathrm{m}}{\text { hour }} \times\left(\frac{1000 \mathrm{~m}}{1 \mathrm{kyn}}\right)=104650 \mathrm{~m} / \text { hour }
\end{aligned}
$$

Units

Changing units

Change 65 miles / hour to m / s

1 hour $=3600 \mathrm{~s}$
$\frac{1 \text { hour }}{3600 \mathrm{~s}}=\frac{3600 \mathrm{~s}}{3600 \mathrm{~s}}$
1 hour
$\frac{1 \text { hour }}{3600 \mathrm{~s}}=1$
$104650 \frac{\mathrm{~m}}{\text { hq/ar }} \times\left(\frac{1 \text { hour }}{3600 \mathrm{~s}}\right)=29 \mathrm{~m} / \mathrm{s}$

Units

Scientific notation

But... if we use a single unit set, the numbers can get very big:
Radius of the observable Universe:
$100,000,000,000,000,000,000,000,000 \mathrm{~m}$

$$
26 \text { zeros } \quad=1 \times 10^{26} \mathrm{~m}
$$

or very small:
Size of a proton:
0.000000000000001 m

$$
=1 \times 10^{-15} \mathrm{~m}
$$

15 zeros

Motion in ID

Motion in ID

Motion in ID

Average speed $=\frac{12,600 \mathrm{~m}}{88.63 \mathrm{~min}}=142 \mathrm{~m} / \mathrm{min}=2.4 \mathrm{~m} / \mathrm{s}$

Motion in ID

Speed is different to velocity which includes direction

$$
\text { Average velocity }=\frac{\text { total displacement }}{\text { total time }}
$$

Average velocity $=\mathrm{v}_{\mathrm{av}}=\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}}=\frac{\Delta x}{\Delta t}$

Motion in ID

Average velocity $=\frac{\text { total displacement }}{\text { total time }}=\frac{\Delta x}{\Delta t}$
X_{1}, x_{2}

$$
\begin{aligned}
\text { Total displacement } & =X_{2}-\mathrm{X}_{1} \\
& =0
\end{aligned}
$$

Average velocity $=\mathrm{v}_{\mathrm{av}}=\frac{\mathrm{x}_{2}-\mathrm{x}_{1}}{\mathrm{t}_{2}-\mathrm{t}_{1}}=\frac{0}{88.63 \mathrm{~min}}=0$

Motion in ID

Speed \& Velocity

Total displacement $=0$
Total distance $=12,600 \mathrm{~m}$

Average speed $=2.4 \mathrm{~m} / \mathrm{s}$
Average velocity $=0$

Motion in ID

What is the average speed for the total trip?
(A) $1.2 \mathrm{~m} / \mathrm{s}$
(C) $3.6 \mathrm{~m} / \mathrm{s}$
(B) $5 \mathrm{~m} / \mathrm{s}$
(D) $2.8 \mathrm{~m} / \mathrm{s}$

Motion in ID

What is the average speed for the total trip?
Average speed $=\frac{\text { Total distance }}{\text { Total time }}=\frac{100 \mathrm{~m}+50 \mathrm{~m}}{12 \mathrm{~s}+30 \mathrm{~s}}$

$$
=3.6 \mathrm{~m} / \mathrm{s}
$$

Motion in ID

What is the average velocity for the total trip?
(A) $1.2 \mathrm{~m} / \mathrm{s}$
(C) $3.6 \mathrm{~m} / \mathrm{s}$
(B) $5 \mathrm{~m} / \mathrm{s}$
(D) $2.8 \mathrm{~m} / \mathrm{s}$

Motion in ID

What is the average velocity for the total trip?
Average velocity $=\frac{\text { total displacement }}{\text { total time }}=\frac{\Delta x}{\Delta t}=\frac{x_{2}-x_{1}}{t_{1}+t_{2}}$

$$
=\frac{50 \mathrm{~m}-0}{12 \mathrm{~s}+30 \mathrm{~s}}=1.2 \mathrm{~m} / \mathrm{s}
$$

Motion in ID

Average \& Instantaneous Velocity

Average velocity does not tell the details of a motion

Did the person speed up?

Slow down?
Stop?

Motion in ID

Average \& Instantaneous Velocity

Motion in ID

Average \& Instantaneous Velocity

Motion in ID

Average \& Instantaneous Velocity

Can we measure velocity at only one time, t_{1} ?

With observations, no!

Need 2 points to get velocity But ... let's look at a graph...

Motion in ID

Average \& Instantaneous Velocity

Position-versus-time graph

Motion in ID

Average \& Instantaneous Velocity

Position-versus-time graph

Motion in ID

Average \& Instantaneous Velocity

We have moved further in the same time.
Velocity is higher.
same
meaning
Gradient (slope) is steeper.

Motion in ID

A.

B.
C.

Which graph shows an object starting slowly, then becoming faster?

Gradient increases \quad Velocity is higher.

Motion in ID

Which graph shows an object changing direction?

Motion in ID

Average \& Instantaneous Velocity

Motion in ID

Average \& Instantaneous Velocity

$$
v_{\mathrm{av}}=\frac{\Delta x}{\Delta t}
$$

Motion in ID

Average \& Instantaneous Velocity

$$
v_{\mathrm{av}}=\frac{\Delta x}{\Delta t}
$$

As the points get closer:

Δt gets smaller average velocity

Motion in ID

Average \& Instantaneous Velocity

Instantaneous velocity = gradient at (x,t)

$$
v=\frac{d x}{d t}
$$

Motion in ID

Find the average velocity between $\mathrm{t}=0$ and $\mathrm{t}=2 \mathrm{~s}$

Motion in ID

Find the average velocity between $\mathrm{t}=0$ and $\mathrm{t}=2 \mathrm{~s}$

Motion in ID

Find the instantaneous velocity at $\mathrm{t}=2 \mathrm{~s}$

Motion in ID

Average \& Instantaneous Velocity
We can find the instantaneous velocity on a graph...
.... but this is slow.

Can we find the instantaneous velocity mathematically?

Motion in ID

Average \& Instantaneous Velocity

A sheep is dropped from a cliff

$$
x=5 t^{2}
$$

Motion in ID

Average \& Instantaneous Velocity

A sheep is dropped from a cliff

$$
x=5 t^{2}
$$

Find the velocity at later time

$$
t+\Delta t
$$

At $t+\Delta t$:

$$
\begin{aligned}
x(t+\Delta t) & =5(t+\Delta t)^{2} \\
& =5\left[t^{2}+2 t \Delta t+(\Delta t)^{2}\right] \\
& =5 t^{2}+10 t \Delta t+5(\Delta t)^{2}
\end{aligned}
$$

Motion in ID

Average \& Instantaneous Velocity

A sheep is dropped from a cliff

$$
x=5 t^{2}
$$

Find the velocity at later time

$$
t+\Delta t
$$

Displacement:

$$
\begin{aligned}
\Delta x & =x(t+\Delta t)-x(t) \\
& =\left[5 t^{2}+10 t \Delta t+5(\Delta t)^{2}\right]-5 t^{2} \\
& =10 t \Delta t+5(\Delta t)^{2}
\end{aligned}
$$

Motion in ID

Average \& Instantaneous Velocity
X

A sheep is dropped from a cliff

$$
x=5 t^{2}
$$

Find the velocity at later time

$$
t+\Delta t
$$

Average velocity:

$$
v_{a v}=\frac{\Delta x}{\Delta t}=\frac{10 t \Delta t+5(\Delta t)^{2}}{\Delta t}=10 t+5 \Delta t
$$

$\Delta t \rightarrow 0$

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=10 t=\frac{d x}{d t}
$$

Motion in ID

Average \& Instantaneous Velocity
Instantaneous velocity:

$$
v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}=\frac{d x}{d t}
$$

Velocity is a rate of change

e.g. position, velocity....
 \uparrow

The differential gives the rate of change of a quantity at a single point in time.

Motion in ID

Average \& Instantaneous Velocity

Differentiation

If:
$x=b t^{n}$
b, $\mathrm{n}=$ constants

Then: $\quad \frac{d x}{d t}=n b t^{n-1}$

Motion in ID

Average \& Instantaneous Velocity

The height of a rocket: $x=2.9 t^{2} \mathrm{~m}$

Find the (instantaneous) velocity at 20s
(A) $1160 \mathrm{~m} / \mathrm{s}$
(C) $58 \mathrm{~m} / \mathrm{s}$
(D) $20 \mathrm{~m} / \mathrm{s}$

Motion in ID

Average \& Instantaneous Velocity

The height of a rocket: $x=2.9 t^{2} \mathrm{~m}$
Find the (instantaneous) velocity at 20s

$$
\begin{aligned}
& v=\frac{d x}{d t}=2.9 \times 2 \times t \\
& v=5.8 \times 20=116 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Motion in ID

If $\quad v=\frac{d x}{d t}$ then what is $\frac{d v}{d t}=$?

A change in velocity is acceleration
average acceleration $\quad=\frac{\Delta v}{\Delta t}$
(instantaneous) acceleration $=\frac{d v}{d t}$

Motion in ID

Motion in ID

Quiz

A Subaru Impreza does $0-60 \mathrm{mph}$ in 5.2 s

What is its average acceleration?

$$
(60 \mathrm{mph}=100 \mathrm{~km} / \mathrm{h})
$$

(A) $5.34 \mathrm{~m} / \mathrm{s}^{2}$
(B) $19.2 \mathrm{~m} / \mathrm{s}^{2}$
(C) $11.5 \mathrm{~m} / \mathrm{s}^{2}$
(D) $19231 \mathrm{~m} / \mathrm{s}^{2}$

Motion in ID

Quiz

A Subaru Impreza does $0-60 \mathrm{mph}$ in 5.2 s

What is its average acceleration?

(60 mph $=100 \mathrm{~km} / \mathrm{h}$)
$60 \mathrm{mph}=100 \mathrm{~km} / \mathrm{h}=100\left(\frac{\mathrm{~km}}{\mathrm{~h}}\right) \times\left(\frac{1000 \mathrm{~m}}{\mathrm{~km}}\right) \times\left(\frac{\mathrm{h}}{3600 \mathrm{~s}}\right)$ $=27.8 \mathrm{~m} / \mathrm{s}$

$$
a_{\mathrm{av}}=\frac{\Delta v}{\Delta t}=\frac{27.8 \mathrm{~m} / \mathrm{s}}{5.2 \mathrm{~s}}=5.34 \mathrm{~m} / \mathrm{s}^{2}
$$

Motion in ID

When the acceleration is constant, the equations for motion are simple

$$
\begin{aligned}
& a=\frac{\Delta v}{\Delta t}=\frac{v-v_{o}}{t-0} \\
& v=v_{0}+a t
\end{aligned}
$$

Motion in ID

Average velocity over time, t :

$$
v_{\mathrm{av}}=\frac{1}{2}\left(v_{o}+v\right)
$$

But, we know:

$$
v_{\mathrm{av}}=\frac{\Delta x}{\Delta t}=\frac{x-x_{0}}{t-0}
$$

Therefore: $\quad x=x_{o}+\frac{1}{2}\left(v_{o}+v\right) t$
But:
So:

$$
v=v_{0}+a t
$$

$$
x=x_{o}+v_{o} t+\frac{1}{2} a t^{2}
$$

Motion in ID

Finally, since:

$$
v=v_{0}+a t
$$

and since:
Then: $t=\frac{v-v_{0}}{a}$
$+v_{0} t+\frac{1}{2} a t^{2}$

$$
v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
$$

Motion in ID

Example

You throw a ball with an initial velocity $\mathrm{v}_{0}=7.3 \mathrm{~m} / \mathrm{s}$, at a height of 1.5 m , with $\mathrm{a}=9.8 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~g})$ downward.

What is the maximum height?

What is the speed when it passes your hand again?

When does it hit the floor?

Motion in ID

Example

You throw a ball with an initial velocity $\mathrm{v}_{0}=7.3 \mathrm{~m} / \mathrm{s}$, at a height of 1.5 m , with $\mathrm{a}=9.8 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~g})$ downward.

What is the maximum height?

What is the speed when it passes your hand again?

When does it hit the floor?

Motion in ID

Example

What is the maximum

 height?At maximum height, $\mathbf{v}=0$

$$
v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
$$

$$
0=(7.3 \mathrm{~m} / \mathrm{s})^{2}+2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(h-1.5 \mathrm{~m})
$$

$$
h=4.2 \mathrm{~m}
$$

Motion in ID

Example

$$
v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)
$$

$$
\begin{aligned}
& =2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.5 \mathrm{~m}-4.2 \mathrm{~m}) \\
& = \pm 7.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

What is the speed when it passes your hand again?

Motion in ID

Example

What is the speed when it passes your hand again?

Why 2 answers?

Because ball is at I.5m twice!

Why are they the same?
Lecture 6!

$$
\begin{aligned}
& =2\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.5 \mathrm{~m}-4.2 \mathrm{~m}) \\
& = \pm 7.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Motion in ID

Example

Quadratic equation:

$$
a t^{2}+b t+c=0
$$

Has 2 solutions:

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Motion in ID

Example

When does it hit the floor?

At floor, $x=0$

(Quadratic equation)
$x=x_{o}+v_{o} t+\frac{1}{2} a t^{2}$

$$
t=\frac{-v_{0} \pm \sqrt{v_{0}^{2}-4\left(\frac{1}{2} a\right) x_{0}}}{2\left(\frac{1}{2} a\right)}
$$

$$
t=\frac{7.8 \pm \sqrt{60.84+2(9.8) 1.5}}{9.8}=1.7 \mathrm{~s}
$$

Motion in ID

Example

When does it hit the floor?

At floor, $x=0$

(Quadratic equation)
$t=-0.18 \mathrm{~s} \quad t=1.7 \mathrm{~s}$

$$
t=\frac{-v_{0} \pm \sqrt{v_{0}^{2}-4\left(\frac{1}{2} a\right) x_{0}}}{2\left(\frac{1}{2} a\right)}
$$

$$
t=\frac{7.8 \pm \sqrt{60.84+2(9.8) 1.5}}{9.8}=1.7 \mathrm{~s}
$$

$$
(f r=0.10 s)
$$

Motion in ID

A car is moving at initial speed, vo
... breaks and comes to a stop in distance d.

If the car is now moves at initial speed, $2 v_{0}$
... what is the distance before stopping?
(breaking force the same)

Motion in ID

A car is moving at initial speed, vo
... breaks and comes to a stop in distance d.

If the car is now moves at initial speed, $2 v_{0}$
... what is the distance before stopping?

$$
\begin{aligned}
& v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right) \Rightarrow 0=\left(v_{0}\right)^{2}+2(-a) d \Rightarrow d=\frac{v_{0}^{2}}{2 a} \\
& 0=\left(2 v_{0}\right)^{2}+2(-a) d_{2} \Rightarrow d_{2}=\frac{4 v_{0}^{2}}{2 a}=4 d
\end{aligned}
$$

This lecture

Know why units are important

Convert (change) between units

Use scientific notation for large and small numbers

Understand the difference between speed and velocity

Calculate average and instantaneous velocity and acceleration

Use equations for constant acceleration

