Essential Physics I

英語で物理学の
エッセンス I

Lecture 14： $25-07-16$

Exam

Next Lecture!

(I week)
All lecture slides on course website:
http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep I

Essential Physics I

This webpage has cosies of the slides used in each lecture. If you have a problem, please email.
Instructon tasker(at)astrol.sci.hokussi.ac .)
or TAs: shima(at)astroi.sci.hoividai.ac.jp, kotake(at)astroi.sci.heliudai.ac.jp.
Course syllatos is here.
Course textbook: "Essemtial Univenvity Physics" by Richard Woltson / Pearson (tsen 97t0321761950) is avaliable from the COOP/Stikrou. You will need a cogy to complete the homeworks.

News

[8-07-2013] Rememberl 250 mord essay due Wednesday Mly 31 st. If you cannot attend the lecture, please
hand yeor essay and article in Mondzy July 2 Sht.
hand your essay and article in Mondar July 250
[15-04-2013] Wekome to the mebsine for Essential Physics II Mease repister with 'Hesterina Phrikia' and
complete the homewerk.

Slides

Lecture 1: Srllabal a How to use the Mentering, Phorici' metabe.
Extra slifes: How to read a arience acticle

[Homework on Mastering Prowics]
Lecture 2: Luits asd 10 motiso
(Homework on Manterins. Phowia)
Lecture 3: Vectors and $20 / 20$ motion
[Homework on Masterino Ptivict
Lecture 4: Crouler Motion and Forces
[10mework co Matering Pricical

Dictionary is OK! (Phone is not)

SHOW ALL WORKING!

NeNE Week's eran

10 multiple choice questions
(A)
(B)
(C)
(D)
~ 6 classical mechanics
~2 oscillations, waves \& fluids
~ 2 optics

Homework	40%
Attendance / clickers	20%
Exam	40%

Pass > 60%
Total
100 \%

Next week's exam

This is a question.

You will get marks!

Last week:

Mirrors \& Lenses

Image position can be found by drawing 2 light rays from points on the object.

Rays touch a real image

Last week:
 Mirrors \& Lenses

Image position can be found by drawing 2 light rays from points on the object. Rays touch a real image

Rays only appear to touch a virtual image
Magnification: $\quad M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s}$

Mirror/Lens equation: (thin lenses)

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

Inside a lens: $\frac{n_{1}}{s}+\frac{n_{2}}{s^{\prime}}=\frac{n_{2}-n_{1}}{R}$

Optics

Interference \& Diffraction

So far...

Ne Weassumed:

Light travels in a straight line: a ray (Geometrical optics)

$$
\lambda \ll x
$$

$w n$

But, sometimes the wave nature of light is very important.
Interference and diffraction

Lecture I0: waves add

wave I + wave 2 = resulting wave

wave I + wave 2 cancel
Destructive interference

waves coincide
Constructive interference

Light waves are the same.

Coherence

Forcontinuous interference. waves must be coherent.

```
e.g. always constructive or always destructive or always ....
```


Coherence

For continuous interference, waves must be coherent.

t3

If phase between waves changes, wave sum changes
incoherent

Coherent waves

Length where the wave phase is constant: coherence length

Lasers: long coherence length

Destructive and constructive

Even for lasers, hard to keep coherence

Split a single light source

Light travels different paths

Recombine

If $x_{1}=(m \lambda) x_{2}$, constructive interference.
If $x_{1}=\left(m+\frac{1}{2}\right) \lambda x_{2}$,
destructive interference patterns.

Double-Slit interference

Produces 2 coherent sources.

cylindrical wavefronts interfere

Double-Slit interference

illuminating screen

Constructive interference
Destructive interference

bright on screen

dark on screen
interference fringes

Double-Slit interference

Constructive interference

Difference in path: $m \lambda$
If $L>d$, rays \sim parallel

Difference in path: $d \sin \theta$

Bright fringes (constructive interference):

$$
d \sin \theta=m \lambda
$$

$$
m=0,1,2, \ldots
$$

fringe order

Double-Slit interference

$$
\begin{array}{cc}
m=1 & m=0 \\
& \\
& \\
&
\end{array}
$$

Bright fringes

Double-Slit interference

Destructive interference

Difference in path: $\left(m+\frac{1}{2}\right) \lambda$ dark fringes:

$$
d \sin \theta=\left(m+\frac{1}{2}\right) \lambda \quad \quad m=0,1,2, \ldots
$$

Typically $L \sim 1 \mathrm{~m}, d<1 \mathrm{~mm}$ and $\lambda<1 \mu \mathrm{~m}$
Therefore: $\sin \theta \simeq \tan \theta=\frac{y}{L}$

$$
y_{\text {bright }}=m \frac{\lambda L}{d} \quad y_{\text {dark }}=\left(m+\frac{1}{2}\right) \frac{\lambda L}{d}
$$

Double-Slit interference

Constructive interference of 2 coherent waves will occur if their path difference is...
(A) λ
(B) $\frac{3 \lambda}{2}$
(C) $\frac{5 \lambda}{2}$
(D) $\frac{\lambda}{2}$

Double-Slit interference

Example

2 slits 0.075 mm apart are located 1.5 m from a screen.
The (3rd-order) bright fringe is 3.8 cm from the screen centre.
What is λ ?

$$
m=3
$$

Use: $\quad y_{\text {bright }}=m \frac{\lambda L}{d}$

$$
\begin{aligned}
\lambda & =\frac{y_{\text {bright }} d}{m L} \\
& =\frac{(0.038 \mathrm{~m})\left(0.075 \times 10^{-3} \mathrm{~m}\right)}{(3)(1.5 \mathrm{~m})}
\end{aligned}
$$

$=633 \mathrm{~nm}$

Double-Slit interference

If you increase the slit separation in a 2 slit system, how does the spacing of the interference fringes change?
(A) They become further apart
(B) The spacing does not change
(C) They become closer together

$$
y_{\text {bright }}=m \frac{\lambda L}{d}
$$

$$
y_{\mathrm{dark}}=\left(m+\frac{1}{2}\right) \frac{\lambda L}{d}
$$

Double-Slit interference

A double-slit experiment has a slit spacing 0.12 mm .
If the bright fringes are 5 mm apart when the slits are illuminated with $633-\mathrm{nm}$ wavelength laser light....

What is the slit-to-screen distance, L ?
(A) 0.95 cm

$$
\text { Use: } \quad y_{\text {bright }}=m \frac{\lambda L}{d}
$$

(B) 95 cm

$$
\Delta y=1 \frac{\lambda L}{d}-0 \frac{\lambda L}{d}=5 \mathrm{~mm}
$$

(C) 150 cm
(D) 15 cm

$$
L=\frac{\Delta y d}{\lambda}=\frac{(0.12 \mathrm{~mm})(5.0 \mathrm{~mm})}{633 \mathrm{~nm}}=95 \mathrm{~cm}
$$

Multiple-Slit interference

What if we add more slits?

Constructive interference
All 3 waves must be in phase
Difference in paths: $m \lambda$
For evenly spaced slits: $\quad d \sin \theta=m \lambda$
(same as for 2 slits)
Destructive interference ... more complicated
All waves must add to zero.
For 3 waves, each wave must out of phase with by I/3.

$$
d \sin \theta=\left(\begin{array}{cc}
\left(m+\frac{1}{3}\right) \lambda & \text { general } \\
\left(m+\frac{2}{3}\right) \lambda & d \sin \theta=\frac{m}{N} \lambda \\
\text { slit no. }
\end{array}\right.
$$

m is integer but not integer multiple of \mathbf{N}

Multiple-Slit interference

2 minima between primary maxima $m \lambda$ and $(m+1) \lambda$
secondary maxima
not fully constructive or fully destructive interference.

Diffraction grating

What if we add even more slits?
Diffraction grating: $\sim 1000 \mathrm{~s}$ slits / cm
If using multi-wavelength light:
since: $d \sin \theta=m \lambda$
for $m>0$, angular position θ depends on λ
maxima occur in different places for different wavelengths

Many slits gives very precise locations for the wavelengths (clear separations)

Diffraction grating

Example

Light from glowing Hydrogen contains $H \alpha$ (hydrogen-alpha) 656.3nm and $H \beta$ (hydrogen-beta) 486.1 nm .

Find the Ist order angular separation between these wavelengths when using a tgrating of 6000 slits /cm.

$$
m=1
$$

6000 slits $/ \mathrm{cm} \quad d=\frac{1}{6000} \mathrm{~cm}=1.667 \mu \mathrm{~m}$

$$
\begin{aligned}
& \theta_{\alpha}=\sin ^{-1}\left(\frac{\lambda}{d}\right)=\sin ^{-1}\left(\frac{0.6563 \mu \mathrm{~m}}{1.667 \mu \mathrm{~m}}\right)=23.2^{\circ} \\
& \theta_{\beta}=\sin ^{-1}\left(\frac{\lambda}{d}\right)=\sin ^{-1}\left(\frac{0.4861 \mu \mathrm{~m}}{1.667 \mu \mathrm{~m}}\right)=17^{\circ}
\end{aligned}
$$

Diffraction grating

Green light at 520 nm is diffracted by a grating with 3000 lines / cm.
Through what angle is the light diffracted in 5th order?
(A) 0.07°

$$
\text { maxima at: } \quad \theta=\sin ^{-1}\left(\frac{m \lambda}{d}\right)
$$

(B) 9.0°

$$
d=\frac{1}{3000 \mathrm{~cm}^{-1}}=3.33 \mu \mathrm{~m}
$$

(C) 51°

$$
\theta=\sin ^{-1}\left(\frac{5 \times 520 \mathrm{~nm}}{3.33 \mu \mathrm{~m}}\right)=51^{\circ}
$$

(D) 0.05°

Diffraction

Why does the slit cause cylindrical waves?

light bending as it passes object

Diffraction

Really need Maxwell's equations but....

Huygens' Principal: (pronounce: her-genz)
All points on wave front are spherical wave sources.

add for resultant wave

Diffraction

Spherical waves blocked by the barrier; only some pass through slit.

Sum of the remaining spherical waves
wave bends (diffraction)

Diffraction

If the slit width \sim wavelength
slit = single wave source

But...
If slit width is larger

Each point in slit is a wave source

Interference between waves in slit

Diffraction

Consider 5 equal spaced sources:
Path length for ray I and 3 differ by $\frac{1}{2} a \sin \theta$ Destructive interference if
or

$$
\frac{1}{2} a \sin \theta=\frac{1}{2} \lambda
$$

$$
a \sin \theta=\lambda
$$

But if ray I and 3 interfere destructively, so do 2 and 4 ...
All rays in lower half of slit will interfere destructively with ray $\frac{a}{2}$ above it.

If you look at the slit at θ such that $a \sin \theta=\lambda$, you will see no light

Diffraction

Similarly

Ray I and 2 differ by $\frac{1}{4} a \sin \theta$
Destructive interference if

$$
\begin{array}{ll}
\text { or } \quad & \frac{1}{4} a \sin \theta=\frac{1}{2} \lambda \\
& a \sin \theta=2 \lambda
\end{array}
$$

But is ray I and 2 interfere destructively, so do 3 and 4...

All rays in lower $3 / 4$ of slit will interfere destructively with ray $\frac{a}{4}$ above it.

If you look at the slit at θ such that $a \sin \theta=2 \lambda$, you will see no light

Diffraction

Generally:

(divide slit into 6, 7, 8 etc sources)

$$
a \sin \theta=m \lambda
$$

Destructive interference, single-slit diffraction for $m=1,2,3, \ldots$
i
for $m=0$ no destructive interference at the central maximum.

Diffraction Limit

Diffraction creates a limit for how close two object can be....
... and still be resolved.

2 sources illuminate the slit
Their waves reach the slit at different angles
(assume sources are incoherent, no regular interference pattern)

2 single slit diffraction patterns
As the sources get closer

Central maxima begins to overlap

Diffraction Limit

(a)

(b)

Diffraction patterns merge

2 peak structure disappears

2 peak visible if

Central maxima of peak I
= Ist minima of peak 2

Rayleigh criterion

when true, 2 sources are just resolved

Diffraction Limit

The angular separation, θ, between the sources

Ist minima: $\sin \theta=\frac{\lambda}{a}$
since $\lambda \ll a \quad$ small angle approximation: $\sin \theta \simeq \theta$

$$
\theta_{\min }=\frac{\lambda}{a} \quad \text { (Rayleigh criterion, slit) }
$$

If using a circular aperture, not slit (e.g. a camera):

$$
\theta_{\min }=\frac{1.22 \lambda}{D \longleftarrow} \quad \text { aperture diameter } \quad \text { (Rayleigh criterion, circular aperture) }
$$

Diffraction Limit

 ExampleAn astroid $20 \times 10^{6} \mathrm{~km}$ away appears on a collision course with the Earth!

What is the minimum size for the astroid that could be resolved with the 2.4 m diameter diffraction-limited Hubble Space Telescope?
diffraction is what prevents the resolved imaged
(not atmosphere etc)

Diffraction Limit

An astroid $20 \times 10^{6} \mathrm{~km}$ away appears on a collision course with the Earth!

What is the minimum size for the astroid that could be resolved with the 2.4 m diameter diffraction-limited Hubble Space Telescope?

$l=\frac{1.22 \lambda L}{D}=5.6 \mathrm{~km}$
Opposite ends of the asteroid = 2 peaks
$\theta \simeq \frac{l}{L} \quad$ (small angle approximation)

Diffraction Limit

 ExampleAn astroid $20 \times 10^{6} \mathrm{~km}$ away appears on a collision course with the Earth!

What is the minimum size for the astroid that could be resolved with the 2.4 m diameter diffraction-limited Hubble Space Telescope?

$$
\begin{aligned}
& \theta_{\min }=\frac{1.22 \lambda}{D} \\
& l=\frac{1.22 \lambda}{D} \\
& \text { big problem! } \\
& l \\
& \frac{1}{D} .22 \lambda \mathrm{~km} \\
&
\end{aligned}
$$

Diffraction Limit

What is the longest wavelength you could use to resolve an object with angular diameter 0.44 mrad, using a microscope with aperture 1.2 mm in diameter?
(A) 528 nm

$$
\theta_{\min }=\frac{1.22 \lambda}{D}
$$

(B) 220 nm

$$
\lambda=\frac{\theta_{\min } D}{1.22}=\frac{(0.44 \mathrm{mrad})(1.2 \mathrm{~mm})}{1.22}=430 \mathrm{~nm}
$$

(C) 130 nm

Man-made star shines in the Southern Sky

Real optics

What has been created at the VLBA (Very Large Telescope Array)?
(A) The biggest mirror on a telescope
(B) An artificial star
(C) A new type of laser
(D) A defense shield

Real optics

Why is this useful?
(A) The laser reflects of stars to find their distance
(B) We can communicate with extra-terrestrial life
(C) Allows the 'adaptive optics' technique to be used anywhere in the sky.
(D) It tracks communication satellites around the world

Real optics

How big is the mirror on the telescope that the laser is launched from?
(A) 10 m
(B) 8.2 m
(C) 3 m
(D) 5 m

Real optics

What height is the "star" created?
(A) 90 km
(B) 10 km
(C) The same as our nearest star
(D) The same as the moon

Real optics

How faint (weak / hard to see) is the artificial star?
(A) $20 \times$ fainter than the faintest star that can be seen with the telescopes
(B) $20 \times$ fainter than the brightest star that can be seen by eye
(C) $20 \times$ fainter than the faintest star that can be seen by eye
(D) $20 \times$ fainter than the brightest star that can be seen by eye

Real optics

What limits a ground-based telescope's image sharpness?
(how good the image is)
(A) Diffraction
(B) Atmospheric turbulence
(C) Moon light
(D) Sun light

Real optics

How does adaptive optics solve this?
(A) It uses a bigger mirror
(B) The laser finds the object's location more accurately
(C) A flexible mirror corrects the image
(D) The laser freezes the image

Real optics

Adaptive optics needs reference star. Why isn't a real star used?
(A) A suitable star isn't always in the sky area you want to observe
(B) A real star's light is too variable (it twinkles)
(C) The reference star must be red
(D) The moon is too bright

Real optics

How does the laser make the star?
(A) Shoots a beam of light into the air
(B) Causes sodium atoms in the atmosphere to glow
(C) The laser reflects of a real star, making it brighter
(D) The laser reflects off the moon

Real optics

What do scientists hope to observe with this new technique?
(A) Black holes forming in other galaxies
(B) 'high redshift' (young) galaxies
(C) Our galactic centre
(D) All the above

