Essential Physics I

$$
\begin{gathered}
\text { 英語で物理学の } \\
\text { エッセンス }
\end{gathered}
$$

Lecture I3：｜｜－07－I6

Reminders

No lecture：Monday I8th July（holiday）

Essay due：Monday 25th July，4：30 pm月曜日 2 5日 7 月 16 ：30 2 weeks！！

Exam：
Monday Ist August，4：30 pm月曜日 1 日 8 月 16 ： 30

Announcements

250 word essay

Read a physics article (in English) on a topic that interests you

This can be one we have covered in class, or a new one.

Describe its main points in 250 words.

Hand in BOTH essay and article
Use your OWN WORDS
Due 2016/7/25
(NO EXTENSIONS)

Exam

IO multiple choice questions
(A)
(B)
(C)
(D)
~ 6 classical mechanics
~2 oscillations, waves \& fluids
~ 2 optics

Homework	40%
Attendance / clickers	20%
Exam	40%

Pass > 60%
Total
100%

Last week:

Reflection \& Refraction

Reflection:

Light ray hits surface
Ray moves away from surface
$\theta_{1}^{\prime}=\theta_{1}$

Refraction:

Light ray hits surface
Ray enters object and changes speed \& direction.
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

Optics

Mirrors and lenses

Plane (flat) Mirrors

Light from the triangle reflects off the mirror to the eye.

Eye assumes light rays are straight
'Sees' the triangle behind the mirror.

Image is virtual : no light actually comes from behind the mirror.

Plane Mirrors

Where is the image?

Distance from mirror?

Height?

Plane Mirrors

2 light rays needed to locate each point in the mirror.
locate arrow top
locate arrow bottom

Plane Mirrors

2 light rays needed to locate each point in the mirror.
locate arrow top

locate arrow bottom
congruent triangles (sides \& angles equal)
arrow to mirror distance $=$ image to mirror distance

Rays top and bottom of arrow are normal to mirror and parallel image is same height as arrow

Plane Mirrors

Plane mirror image has same length and orientation (not upside down) as object.

But reverse the object front-to-back.

Plane Mirrors

You stand in front of a plane mirror whose top is the same height as the top of your height.

Approximately how far down must the mirror extend for you to see your full image?
(A) To ground where you are standing
(B) ~ 3/4 of the way to the ground
(C) \sim I/2 of the way to the ground
(D) ~ I/4 of the way to the ground
(Hint: draw rays)

Plane Mirrors

You stand in front of a plane mirror whose top is the same height as the top of your height.

Approximately how far down must the mirror extend for you to see your full image?

Curved Mirrors

Parabolic curved mirror:
If ray is parallel to axis,
it will be reflected through the focal point.
angle with normal $=$ angle with line
to focal point

Can concentrate light at the focal point or put light source at the focal point and get parallel rays

Curved Mirrors

Parabolic curved mirror:
If ray is parallel to axis, it will be reflected through the focal point.
angle with normal $=$ angle with line
to focal point

Can concentrate light at focal point

or put light source at focal point and get parallel rays

Curved Mirrors

Close to apex, mirror looks spherical.
Easier to make spherical mirrors
most focussing mirrors are spherical.
slight image distortion:
spherical aberration

Famous example: Hubble Space Telescope
Mirror made with wrong curve, big spherical aberration.

Curved Mirrors

To minimise spherical aberration:
Mirror small fraction of whole sphere

Focal length >> mirror
Rays strike the mirror ~ parallel to axis

Curved Mirrors

To find image draw 2 rays from different points on the object. Any ray possible, but these are simplest:
(1) A ray parallel to the mirror axis reflects through the focal point.

Curved Mirrors

To find image draw 2 rays from different points on the object. Any ray possible, but these are simplest:
(1) A ray parallel to the mirror axis reflects through the focal point.
(2) A ray passing through the focal point reflects parallel to the axis.

Curved Mirrors

To find image draw 2 rays from different points on the object. Any ray possible, but these are simplest:
(1) A ray parallel to the mirror axis reflects through the focal point.
(2) A ray passing through the focal point reflects parallel to the axis.
(3) A ray striking the center of the mirror reflects symmetrically about the mirror axis.

Curved Mirrors

To find image draw 2 rays from different points on the object. Any ray possible, but these are simplest:
(1) A ray parallel to the mirror axis reflects through the focal point.
(2) A ray passing through the focal point reflects parallel to the axis.
(3) A ray striking the center of the mirror reflects symmetrically about the mirror axis.
(4) A ray through the centre of curvature of the mirror returns on itself.

Curved Mirrors

Examples:

Real, inverted, reduced image

Locate image top with 2 rays (types I \& 2)

From symmetry, bottom of image is on the axis.
(also, ray along axis is reflected straight back, type 4)

Light rays come from the image: real image

Curved Mirrors

Examples: move object closer to mirror

Locate image top with 2 rays (types I \& 2)

From symmetry, bottom of image is on the axis.
(also, ray along axis is reflected straight back, type 4)

Light rays come from the image: real image
As object gets closer to mirror, image size increases.
When object is between mirror centre (C) and focus point (F), image is larger than object and further away.

Curved Mirrors

Examples: move object closer to mirror

Locate image top with 2 rays (types I \& 2)

From symmetry, bottom of image is on the axis.

Rays diverge (go apart) after reflection.
Appear to cross behind the mirror

Light rays do not come from the image: virtual image Image is upright and enlarged.

Curved Mirrors

magnification $=0.72$
This is a real, inverted image.

Curved Mirrors

Where would you place an object so its real image is the same size as the object?
(A) At the mirror's centre of curvature (C)
(B) At the mirror's focal length (F)
(C) At twice the mirror's centre of curvature $(2 \times \mathrm{C})$
(D) Not possible

Curved Mirrors

Where would you place an object so its real image is the same size as the object?
(A) At the mirror's centre of curvature (C)
(B) At the mirror's focal If
(C) At twice the mirror's

(D) Not possible

Curved Mirrors Quiz

Where would you place an object so there is no reflected image?
(A) At the mirror's centre of curvature (C)
(B) At the mirror's focal length (F)
(C) At twice the mirror's centre of curvature ($2 \times \mathrm{C}$)
(D) Not possible

Curved Mirrors

Where would you place an object so there is no reflected image?
(A) At the mirror's centre of curvatur
(B) At the mirror's focal length (F)
(C) At twice the mirror's centre of cu

Rays are parallel:
(D) Not possible

Curved Mirrors

Convex mirrors

Reflected rays diverge

Only forms virtual images
Reflected parallel rays appear to come from the focal point behind the mirror, F

Image is always upright (not inverted) and smaller.

Curved Mirrors

Convex mirrors

magnification $=0.19$
This is a virtual, upright image.

Mirror Equation

Drawing rays works....
... but can we be more accurate?
2 rays (type I \& 3)

Mirror Equation

Drawing rays works....
... but can we be more accurate?
2 rays (type I \& 3)
Similar triangles:

Similar triangles, so $h^{\prime} / h=-s^{\prime} / s$
inverted image: negative h'

$$
M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s} \quad \text { (magnification) }
$$

Here, $|M|<1$ because image is smaller and negative, because image is inverted

Mirror Equation

Drawing rays works....
... but can we be more accurate?
2 rays (type I \& 3)
Similar triangles \#2 :

$-\frac{h^{\prime}}{h}=\frac{\left(s^{\prime}-f\right)}{f} \quad M=h^{\prime} / h=-s^{\prime} / s \quad \frac{s^{\prime}}{s}=\frac{\left(s^{\prime}-f\right)}{f}$

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

mirror equation

Mirror Equation

By drawing a ray through the centre of curvature (C), type 4
Find 3rd set of similar triangles and show:
(A) $|f|=\frac{R}{4}$
(B) $|f|=\frac{R}{2}$
(C) $|f|=R$
(D) $|f|=\frac{2 R}{3}$

Mirror Equation

By drawing a ray through the centre of curvature (C), type 4
Find 3rd set of similar triangles and show:

$$
\begin{aligned}
& s-R \\
& -\frac{h^{\prime}}{h}=\frac{R-s^{\prime}}{s-R}
\end{aligned}
$$

since: $M=h^{\prime} / h=-s^{\prime} / s \quad \frac{s^{\prime}}{s}=\frac{R-s^{\prime}}{s-R}$

$$
\frac{s-R}{s}=\frac{R-s^{\prime}}{s^{\prime}} \quad \frac{1}{s}=\frac{2}{R}-\frac{1}{s^{\prime}}
$$

Mirror Equation

By drawing a ray through the centre of curvature (C), type 4
Find 3rd set of similar triangles and show:

$$
\frac{1}{s}=\frac{2}{R}-\frac{1}{s^{\prime}}
$$

$$
\text { since: } \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

$$
\left(\frac{2}{R}-\frac{1}{s^{\prime}}\right)+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

$$
f=\frac{R}{2}
$$

Mirror Equation

$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$

If image is virtual: $s^{\prime}<0$
image distance is negative

If mirror is convex: $f<0$

Mirror Equation

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

Table 31.1 Image Formation with Mirrors: Sign Conventions

Focal Length, \boldsymbol{f}	Object Distance, s	Image Distance, s^{\prime}	Type of Image	Ray Diagram
$\begin{gathered} + \\ \text { (concave) } \end{gathered}$	(in front of mirror) $s>2 f$	(in front of mirror) $s^{\prime}<2 f$	Real, inverted, reduced	
(concave)	(in front of mirror) $2 f>s>f$	(in front of mirror) $s^{\prime}>2 f$	Real, inverted, enlarged	
$\stackrel{+}{+}$	(in front of mirror) $s<f$	(behind mirror)	Virtual, upright, enlarged	
$\begin{gathered} - \\ \text { (convex) } \end{gathered}$	(in front of mirror)	(behind mirror)	Virtual, upright, reduced	

Mirror Equation

A negative magnification for a mirror means that:
(A) the image is inverted, and the mirror is concave.
(B) the image is inverted, and the mirror is convex.
(C) the image is inverted, and the mirror may be convex or concave.
(D) the image is upright, and the mirror may be convex or concave.
(E) the image is upright, and the mirror is convex.

Mirror Equation

Example

The Hubble Space Telescope has a mirror with 5.52 m focal length.

A man stands 3.85 m in front of the mirror.

What is the (a) location
(b) magnification of the image?

mirror equation: $\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$
$s^{\prime}=\frac{f s}{s-f}=\frac{(5.52 \mathrm{~m})(3.85 \mathrm{~m})}{3.85 \mathrm{~m}-5.52 \mathrm{~m}}$

$$
=-12.7 \mathrm{~m}
$$

Mirror Equation

Example

The Hubble Space Telescope has a mirror with 5.52 m focal length.

A man stands 3.85 m in front of the mirror.

What is the (a) location
(b) magnification of the image?

$$
M=-\frac{s^{\prime}}{s}=-\frac{-12.7 \mathrm{~m}}{3.85 \mathrm{~m}}=3.30
$$

Mirror Equation Example

Jurassic Park

OBJECTS IN MIRROR ARE CLOSER THAN THEY SEEM.

Mirror Equation

Example

If the mirror's curvature radius is 12 m and the T . rex is 9.0 m away, what is its magnification?
mirror equation: $\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \zeta s^{\prime}=\frac{f s}{s-f}$

$$
\begin{aligned}
M & =-\frac{s^{\prime}}{s}=-\frac{f s /(s-f)}{s}=-\frac{f}{s-f} \quad \text { and }|f|=R / 2=-6.0 \mathrm{~m} \\
& =-\frac{(-6.0 \mathrm{~m})}{9.0 \mathrm{~m}-(-6.0 \mathrm{~m})}=0.4 \quad \begin{array}{l}
\text { 40\% of actual size, so seems to } \\
\text { be further away. }
\end{array}
\end{aligned}
$$

Mirror Equation

A virtual image is located 40 cm behind a concave (parabolic) mirror with focal length 18 cm .

Where is the object?
(A) 22 cm

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

(B) -22 cm

$$
s=\frac{f s^{\prime}}{\left(s^{\prime}-f\right)}=\frac{(18 \mathrm{~cm})(-40 \mathrm{~cm})}{-58 \mathrm{~cm}}=12 \mathrm{~cm}
$$

(D) -12 cm

Mirror Equation

A virtual image is located 40 cm behind a concave (parabolic) mirror with focal length 18 cm .

By how much is it magnified?
(A) 2.2

$$
s=\frac{f s^{\prime}}{\left(s^{\prime}-f\right)}=\frac{(18 \mathrm{~cm})(-40 \mathrm{~cm})}{-58 \mathrm{~cm}}=12 \mathrm{~cm}
$$

(B) 1.5

$$
M=-\frac{s^{\prime}}{s}=\frac{40 \mathrm{~cm}}{12 \mathrm{~cm}}=3.3
$$

(C) 0.3
(D) 3.3

Lenses

Lenses

A lens uses refraction to form images.

Converging lens

Convex lens that focusses parallel rays to the focal point

Diverging lens
Concave lens: parallel rays seem to move away from a common focus.

Only forms virtual images.

Because lenses refract, not reflect, this is opposite to mirrors.

Lenses

Thin lens approximation

Thickness << curvature radius

Although the ray refracts twice (as it enters lens and as it exits)
thin lens
single refraction

Rays can pass through a lens in 2 directions Focal length is the same both sides.

Lenses

Ray through lenses
(I) Ray parallel to lens axis reflects through the focal point.
(2) Ray passing through the centre travels straight.

Use these two rays to find images formed with lenses.

Lenses

Examples

Object further than two focal lengths, $s>2 f$

Image smaller and inverted.
Light rays come from the image: real image
(do not need to look through lens to see images)

Lenses

Examples: approach the lens

Distance to image gets larger.
Image becomes larger.

Lenses

Examples: approach the lens

Object closer than focal length, $s<f$
Image large and virtual: rays do not come from image
Can only be seen looking through the lens.

Lenses

magnification $=-0.428571$

This is a real, inverted image.

Lenses

> magnification $=0.232198$
> This is a virtual, upright image.

Concave (diverging) lens always forms a smaller, upright image.
Only visible through the lens.

The lens equation

Similar triangles: $\quad M=\frac{h^{\prime}}{h}=-\frac{s^{\prime}}{s} \quad$ Magnification
(same as mirrors)

The lens equation

$$
s^{\prime}-f
$$

h

Similar triangles \#2:

$$
\frac{-h^{\prime}}{s^{\prime}-f}=\frac{h}{f}
$$

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}
$$

lens equation (same as mirror equation)

The lens equation

Table 31.2 Image Formation with Lenses: Sign Conventions

Focal Length, f Object Distance, $s \quad$ Image Distance, $s^{\prime} \quad$ Type of Image Ray Diagram

$\begin{gathered} + \\ (\text { convex) } \end{gathered}$	$\begin{gathered} + \\ s>2 f \end{gathered}$	$+$ (opposite side of lens) $2 f>s^{\prime}>f$	Real, inverted, reduced	
$\begin{gathered} + \\ \text { (convex) } \end{gathered}$	$\begin{gathered} + \\ 2 f>s>f \end{gathered}$	(opposite side of lens) $s^{\prime}>2 f$	Real, inverted, enlarged	

+	+	-	Virtual, upright, enlarged
$s<f$			

-	+	-	Virtual,
(concave)	upright, reduced	$\frac{F}{o}+\cdots$	

Q 2012 Pearson Education, inc:

The lens equation

You look through a lens at a page and see the words enlarged and right side up. Is the image and lens:
Table 31.2 Image Formation with Lenses: Sign Conventions
(A) real, concave
(B) real, convex
(C) virtual, concave

Focal Length, f	Object Distance, 5	Image Distance, s^{\prime}	Type of Image	Ray Diagram
(convex)	$\stackrel{+}{s>2 f}$	(opposite side of lens) $2 f>s^{\prime}>f$	Real, inverted, reduced	
$\begin{gathered} + \\ \text { (convex) } \end{gathered}$	$\stackrel{+}{2 f>s>f}$	(opposite side of lens) $s^{\prime}>2 f$	Real, inverted, enlarged	
$\begin{gathered} + \\ \text { (convex) } \end{gathered}$	$\stackrel{+}{s<f}$	(same side of lens)	Virtual, upright, enlarged	
(concave)	+	(same side of lens)	Virtual, upright, reduced	

(D) virtual, convex

The lens equation

You use a magnifying glass with a 30 cm focal length to read.

How far from the page should you hold the lens to see the print enlarge $3 \times$?

$$
\begin{aligned}
& M=-\frac{s^{\prime}}{s}=3 \quad s^{\prime}=-3 s \\
& \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \leadsto \quad \frac{1}{s}-\frac{1}{3 s}=\frac{2}{3 s}=\frac{1}{f}=\frac{1}{30 \mathrm{~cm}}
\end{aligned}
$$

$$
s=\frac{(2)(30 \mathrm{~cm})}{3}=20 \mathrm{~cm}
$$

The lens equation

A lightbulb is 56 cm from a convex lens. Its image appears on the screen 31 cm from the lens, on the opposite side.

What is the lens's focal length?
(A) 0.05 cm

$$
f^{-1}=s^{-1}+s^{\prime-1}=(56 \mathrm{~cm})^{-1}+(31 \mathrm{~cm})^{-1}
$$

(B) 87 cm
(C) 20 cm
(D) 40 cm

The lens equation

A real image is $4 \times$ as far from the lens as the object is from the lens.

What's the object's distance?
(A) $s=\frac{5 f}{4}$

$$
\frac{1}{f}=\frac{1}{s}+\frac{1}{4 s}=\frac{5}{4 s}
$$

(B) $s=\frac{4}{f}$

$$
s=\frac{5 f}{4}
$$

(C) $s=\frac{1}{4 f}$
(D) $s=\frac{1 f}{5}$

Refraction in Lenses

What is the lens isn't 'thin'?
Path of a single ray
Assume rays make small angles with axis $\sin x \simeq \tan x \simeq x$
(paraxial approximation)
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \triangleleft n_{1} \theta_{1}=n_{2} \theta_{2}$

$$
\begin{aligned}
& \theta_{2}=\beta-\gamma \\
& \theta_{1}=\alpha+\beta
\end{aligned}
$$

$n_{1}(\alpha+\beta)=n_{2}(\beta-\gamma)$
$\mathrm{BA} \sim$ straight line: $\alpha \simeq \tan \alpha \simeq B A / s$ and

$$
\begin{aligned}
& \beta \simeq B A / R \\
& \gamma \simeq B A / s^{\prime}
\end{aligned}
$$

Refraction in Lenses

$$
n_{1}(\alpha+\beta)=n_{2}(\beta-\gamma)
$$

$$
n_{1}\left(\frac{B A}{s}+\frac{B A}{R}\right)=n_{2}\left(\frac{B A}{R}-\frac{B A}{s^{\prime}}\right)
$$

Rearranging: $\frac{n_{1}}{s}+\frac{n_{2}}{s^{\prime}}=\frac{n_{2}-n_{1}}{R}$

(b)

Angle of ray α, not in equation

True for ALL rays.

All rays from object focus onto a single point, I.

Refraction in Lenses

Example

A fish tank is a thin-walled plastic tube, 70 cm in diameter.
(cylinder of water $=$ thick lens)
A cat looks directly at the fish. What is the apparent distance to fish 15 cm from the tank wall?

$$
\frac{n_{1}}{(s)}+\frac{n_{2}}{s^{\prime}}=\frac{n_{2}-n_{1}}{\frac{R}{-35 \mathrm{~cm}}}
$$

$$
s^{\prime}=n_{2}\left(\frac{n_{2}-n_{1}}{R}-\frac{n_{1}}{s}\right)^{-1}=-12.6 \mathrm{~cm}
$$

Refraction in Lenses

The bottom of a swimming pool looks to be 1.5 m below the surface. Find the pool's actual depth.
[Hint: radius of curvature = radius of Earth ~ infinite]
(A) $\quad 2.0 \mathrm{~m}$

$$
\mathrm{n} \text { water }=1.33
$$

(B) 4.0 m
(C) 6.0 m
(D) 1.0 m

Refraction in Lenses

The bottom of a swimming pool looks to be 1.5 m below the surface. Find the pool's actual depth.
[Hint: radius of curvature = radius of Earth ~ infinite]
(A) 2.0 m
(B) 4.0 m

$$
\begin{aligned}
\frac{n_{1}}{s}+\frac{n_{2}}{s^{\prime}} & =\frac{n_{2}-n_{1}}{R} \\
& =0
\end{aligned}
$$

(C) 6.0 m

$$
\frac{n_{1}}{s}=-\frac{n_{2}}{s^{\prime}}
$$

$$
s=-s^{\prime} \frac{n_{1}}{n_{2}}=-(-1.5 \mathrm{~m}) \frac{1.333}{1.0}=2.0 \mathrm{~m}
$$

Thick and thin lenses

Left-hand side: convex surface, object O_{1}, virtual image I_{1}.
$\frac{n_{1}}{s}+\frac{n_{2}}{s^{\prime}}=\frac{n_{2}-n_{1}}{R} \leadsto \frac{1}{s_{1}}+\frac{n}{s_{1}^{\prime}}=\frac{n-1}{R_{1}}$
Right-hand side: concave surface, object O_{2}, real image I_{2}.

$$
\frac{n_{1}}{s}+\frac{n_{2}}{s^{\prime}}=\frac{n_{2}-n_{1}}{R} \leadsto \frac{n}{t-s_{1}^{\prime}}+\frac{1}{s_{2}^{\prime}}=\frac{1-n}{R_{2}}
$$

Thick and thin lenses

Let lens become thin, $t \rightarrow 0$
$\frac{1}{s_{1}}+\frac{n}{s_{1}^{\curlywedge}}=\frac{n-1}{R_{1}}+\frac{n}{t-s_{1}^{\prime}}+\frac{1}{s_{2}^{\prime}}=\frac{1-n}{R_{2}}$
$\frac{1}{s}+\frac{1}{s^{\prime}}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
(subscripts dropped)

Thick and thin lenses

$\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f}$

Therefore: $\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
lensmaker's formula
left-hand surface is convex towards object

$$
R_{1}>0
$$

right-hand surface is concave towards object $R_{2}<0$

Thick and thin lenses

Example

Find an expression for the focal length of a plano-convex lens.

Refractive index n .
One curved surface: $\quad R_{1}=R$
One flat surface: $\quad R_{2}=\infty$

$$
\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

$$
f=\left[(n-1)\left(\frac{1}{R}-\frac{1}{\infty}\right)\right]^{-1}=\frac{R}{n-1}
$$

Final note: aberrations

If small angle approximation fails (rays make bigger angle with axis)
not all rays share a same focus
spherical aberration.

Using only centre of lens helps remove rays with big angles.

Lenses + Mirrors

A plane mirror is located at the origin.
A converging lens with focal length 5.0 m is located at $\mathrm{x}=1.0 \mathrm{~m}$.
An object is places at $x=31.0 \mathrm{~m}$.
What is the location of the final image, seen by looking through the lens?

31.0 m

Lenses + Mirrors

Step I: Location of image produced by lens?
(A) 4.2 m

$$
\frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad \checkmark \frac{1}{s^{\prime}}=\frac{1}{5.0}-\frac{1}{30}
$$

(B) $\quad-6 \mathrm{~m}$

$$
s=6.0 \mathrm{~m} \quad \text { behind lens }
$$

(C) -5 m
$x=-5 m$
(D) 3 m

Lenses + Mirrors

This is on virtual side of mirror: virtual object.
Step 2: Location of image produced by mirror?
(A) 2.5 m
(B) 5 m
(C) -2.5 m
(D) 10 m

Plane mirror: distance from mirror to object = distance from object to mirror

Light passes back through lens!

Lenses + Mirrors

Step 3: Location of image produced by lens (after reflection) ?
(A) -4.3 m
(B) 5.1 m
(C) -3.9 m
(D) 3.2 m

$$
\begin{aligned}
& \frac{1}{s}+\frac{1}{s^{\prime}}=\frac{1}{f} \quad s=-4 \mathrm{~m} \\
& \frac{1}{s^{\prime}}=\frac{1}{5}-\frac{1}{-4} \\
& s^{\prime}=2.2 \mathrm{~m} \quad x=s^{\prime}+1=3.2 \mathrm{~m}
\end{aligned}
$$

This week

REMEMBER！

Essay next lecture．

Monday 25th July，4：30 pm
月曜日 2 5日 7 月 16 ：30

