Essential Physics I

$$
\begin{gathered}
\text { 英語で物理学の } \\
\text { エッセンス। }
\end{gathered}
$$

Lecture I2：04－07－I6

Last lecture: review

Fluids

Hydrostatic equilibrium

Archimedes' Principal
$\because=$ = Buoyancy: pressure force on object
= weight of fluid displaced

volume flow rate

$\rightarrow \quad$| $A v=$ constant |
| :--- |
| for liquid (constant $\rho)$ |

Bernoulli's equation

$$
P+\rho g y+\frac{1}{2} \rho v^{2}=\text { constant }
$$

Last lecture: review

A lead ball ($\rho=11.3 \mathrm{~g} / \mathrm{cm}^{3}$) enters a tub of mercury $\left(\rho=13.6 \mathrm{~g} / \mathrm{cm}^{3}\right)$.

What happens?

(A) Lead ball will float with $\sim 83 \%$ of volume below mercury surface
(B) Lead ball will float with 100% of volume below mercury surface
(C) Lead ball will float with $\sim 17 \%$ of volume below mercury surface
(D) Lead ball will sink

Last lecture: review

A lead ball ($\rho=11.3 \mathrm{~g} / \mathrm{cm}^{3}$) enters a tub of mercury $\left(\rho=13.6 \mathrm{~g} / \mathrm{cm}^{3}\right)$.

What happens?

(A) Lead ball will float with $\sim 83 \%$ of volume below mercury surface

Archimedes' Principal
Buoyancy force $=$ weight of mercury displaced $=\rho_{\mathrm{Hg}} V_{\text {sub }} g$
$=$ weight of lead ball $=\rho_{\mathrm{Fe}} V_{\mathrm{tot}} g$
$\frac{\rho_{\mathrm{Fe}}}{\rho_{\mathrm{Hg}}}=\frac{V_{\mathrm{sub}}}{V_{\mathrm{tot}}}=0.83$

Last lecture: review

You are driving a convertible car at 65 mph .
The soft roof and windows are closed.
The roof...
(A) bows inward

(B) Same as when car is stopped

(C) bows outward
(D) bows inward only when driving uphill
(E) bows inward only when driving downhill

Last lecture: review

You are driving a convertible car at 65 mph .
The soft roof and windows are closed.
The roof...
(C) bows outward

Bernoulli's equation

lower constant higher

\longrightarrow lower pressure
\longrightarrow pressure gradient, ΔP
$\longrightarrow \uparrow$ force

Last lecture: review

To provide the lift force needed for flight, aeroplane wings must be designed so that...:
(A) Air molecules will be deflected downward when they flow past the wing
(B) Air molecules will be deflected upward when they flow past the wing

Air molecules will move faster over the upper surface of the wing than the lower surface
(D) Air molecules will move slower over the upper surface of the wing than the lower surface

Last lecture: review

To provide the lift force needed for flight, aeroplane wings must be designed so that...:
(C) Air molecules will move faster over the upper surface of the wing than the lower surface
Bernoulli's equation $P+\rho g y+\frac{1}{2} \rho v^{2}=$ constant

Optics

Light is an wave:

$$
\bigcap_{u(x, t)=\cos (x, x \pm \omega t)}
$$

But, if light is interacting with an object much bigger than its wavelength:

$$
\lambda \ll x
$$

Assume:
Light travels in a straight line: a ray
Geometrical optics

Reflection \& Refraction

Reflection

Refraction

Reflection \& Refraction

Reflection:

Light ray hits surface
Ray moves away from surface

Refraction:

Light ray hits surface

Ray enters object and changes direction.

Reflection \& Refraction

Usually, a ray is both reflected and refracted.

Reflection \& Refraction

Your eye used both reflection and refraction:

Reflection

$$
\theta_{1}^{\prime}=\theta_{1}
$$

Specular reflection

Parallel rays, smooth surface
Rays reflected without distortion.

Diffuse reflection

Rough surface
Rays reflected in different directions

Reflection

medium 1

$$
\theta_{1}^{\prime}=\theta_{1}
$$

Specular reflection

Parallel rays, smooth surface
Rays reflected without distortion.
Diffuse reflection
Rough surface
Rays reflected in different directions

Reflection

Example

2 mirrors joined at right angles (perpendicular)

Show any incident light ray will return anti-parallel (opposite direction)

turn 180°

since $\theta_{1}^{\prime}=\theta_{1}$

Reflection

Example

2 mirrors joined at right angles (perpendicular)

Show any incident light ray will return anti-parallel (opposite direction)

turn 180°

light ray turned by

$$
180^{\circ}-2 \theta
$$

light ray turned by

$$
180^{\circ}-2 \phi
$$

Total turning angle: $\left(180^{\circ}-2 \theta\right)+\left(180^{\circ}-2 \phi\right)=360^{\circ}-2(\theta+\phi)$

Reflection

Example

$$
\theta+\phi=90^{\circ}
$$

2 mirrors joined at right angles (perpendicular)

Show any incident light ray will return anti-parallel (opposite direction)

Total turning angle: $\left(180^{\circ}-2 \theta\right)+\left(180^{\circ}-2 \phi\right)=360^{\circ}-2(\theta+\phi)$

$$
360^{\circ}-2\left(90^{\circ}\right)=180^{\circ}
$$

Reflection

What is the angle θ ?
(A) 120°
(B) 25°
(C) 65°
(D) 55°

Reflection

Quiz

What is the angle θ ?
(A) 100°
(B) 50°
(C) 95°
(D) 120°

Reflection

What is the angle θ ?
Total rotation: $\quad \phi_{1}+\phi_{2}=\phi_{r}$

$$
\phi_{1}=180^{\circ}-2 \theta_{1}
$$

Reflection

What is the angle θ ?
Total rotation: $\quad \phi_{1}+\phi_{2}=\phi_{r}$

$$
\phi_{1}=180^{\circ}-2 \theta_{1}
$$

$$
\phi_{2}=180^{\circ}-2 \theta_{2}
$$

Reflection

What is the angle θ ?
Total rotation: $\quad \phi_{1}+\phi_{2}=\phi_{r}$

$$
\begin{aligned}
& \phi_{1}=180^{\circ}-2 \theta_{1} \\
& \phi_{2}=180^{\circ}-2 \theta_{2}
\end{aligned}
$$

$$
\theta=360^{\circ}-\phi_{r}
$$

Reflection

What is the angle θ ?
Total rotation: $\quad \phi_{1}+\phi_{2}=\phi_{r}$

$$
\begin{aligned}
& \phi_{1}=180^{\circ}-2 \theta_{1} \\
& \phi_{2}=180^{\circ}-2 \theta_{2} \\
& \theta=360^{\circ}-\phi_{r} \\
& 180-2 \theta_{1}+180-2 \theta_{2}=360-\theta \\
& 2 \theta_{1}+2 \theta_{2}=\theta
\end{aligned}
$$

Reflection

What is the angle θ ?

$$
\alpha+\beta+50^{\circ}=180^{\circ} \Rightarrow \alpha+\beta=130^{\circ}
$$

Reflection

Quiz

What is the angle θ ?

$$
\alpha+\beta+50^{\circ}=180^{\circ} \Rightarrow \alpha+\beta=130^{\circ}
$$

$$
\alpha+\theta_{1}=90^{\circ}
$$

Reflection

Quiz

What is the angle θ ?

$$
\alpha+\beta+50^{\circ}=180^{\circ} \Rightarrow \alpha+\beta=130^{\circ}
$$

$$
\alpha+\theta_{1}=90^{\circ}
$$

$\beta+\theta_{2}=90^{\circ}$

Reflection

What is the angle θ ?

$$
\alpha+\beta+50^{\circ}=180^{\circ} \Rightarrow \alpha+\beta=130^{\circ}
$$

$$
\alpha+\theta_{1}=90^{\circ}
$$

$$
\beta+\theta_{2}=90^{\circ}
$$

$$
\left(\alpha+\theta_{1}\right)+\left(\beta+\theta_{2}\right)=180^{\circ}
$$

$$
(\alpha+\beta)+\left(\theta_{1}+\theta_{2}\right)=180^{\circ}
$$

$$
\theta=100^{\circ}
$$

Partial Reflection

Some reflection always occurs
 ... even in glass

Smallest reflection for an incident ray normal (90°) to surface.
 Glass ~ 4\% reflected light

Larger angle results in more reflection

Refraction

(θ_{1}
Refraction occurs when a light ray enters a new medium.

It changes speed

Refraction

Refraction occurs when a light ray enters a new medium.

It changes speed

and direction

The speed of light in a transparent medium is lower than in a vacuum.

$$
\begin{aligned}
& v<c \\
& c=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { speed of light in a vacuum }
\end{aligned}
$$

> (index of refraction) $n=\frac{c}{v}$

Refraction

$$
\begin{aligned}
& n=\frac{c}{v} \\
& v=f \lambda \quad \Rightarrow \quad \lambda=\frac{v}{f}=\frac{c}{n f}
\end{aligned}
$$

Medium 1
Medium 2
\vec{v}_{1}

Neither c nor f change.
Only λ and n.
$\lambda \propto \frac{1}{n}$

Defraction

Substance	Index of Refraction, \boldsymbol{n}
Gases	
Air	1.000293
Carbon dioxide	1.00045
Liquids	
Water	1.333
Ethyl alcohol	1.361
Glycerine	1.473
Benzene	1.501
Diiodomethane	1.738
Solids	
Ice ($\mathrm{H}_{2} \mathrm{O}$)	1.309
Polystyrene	1.49
Glass	1.5-1.9
Sodium chloride (NaCl)	1.544
Diamond (C)	2.419
Rutile (TiO_{2})	2.62
*At 1 atm pressure and temperatures ranging from $0^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$, measured at a wavelength of 589 nm (the yellow line of sodium).	

Refraction

The change in λ causes the direction to change:

Refraction

The change in λ causes the direction to change:

$\frac{\lambda_{1}}{\sin \theta_{1}}=\frac{\lambda_{2}}{\sin \theta_{2}}$
and since: $\quad \lambda_{1}=\frac{c}{f} \frac{1}{n_{1}}$

Refraction

$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

When going from low $\backslash n$... ... to high \hat{n}
the ray bends towards to the normal

When going from high $\hat{}$ n ...
... to low $\downarrow n$
the ray bends away to the normal

Refraction

Example

Show the ray exiting the glass slab is parallel to the incident ray.
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \quad$ Snell's law

Refraction occurs:
entering block: low n to high n
$1 \sin \theta_{1}=n \sin \theta_{2} \longrightarrow \sin \theta_{2}=\sin \theta_{1} / n$

exiting block: high n to low n
$n \sin \theta_{3}=1 \sin \theta_{4} \longrightarrow \sin \theta_{4}=n \sin \theta_{3}$
slab faces parallel: $\theta_{2}=\theta_{3} \longrightarrow \sin \theta_{4}=n\left(\frac{\sin \theta_{1}}{n}\right)=\sin \theta_{1}$
rays are paralle!!

Refraction

Example

Laser 'reads' a CD
Entres CD 0.737 mm wide
Refracted to width d mm
What is d?
Snell's law: $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

$$
\begin{gathered}
\theta_{2}=\sin ^{-1}\left(n_{1} \sin \theta_{1} / n_{2}\right)=17.03^{\circ} \\
\begin{array}{c}
d=D-2 x=D-2 t \tan \theta_{2} \\
=1.80 \mu m
\end{array}
\end{gathered}
$$

Refraction allows a larger laser to be used for CD players

Refraction

Rank the refractive indices.
(A) $n_{1}>n_{2}>n_{3}$
(B) $\quad n_{3}>n_{1}>n_{2}$
(C) $n_{3}>n_{2}>n_{1}$
(D) $n_{2}>n_{1}>n_{3}$

Refraction

What is θ ?
(A) 20°
(B) 30°
(C) 50°
(D) 60°

Snell's law

$$
\begin{aligned}
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& \sin 50^{\circ}=1.53 \sin \theta_{2} \\
& \theta_{2}=\sin ^{-1}\left(\frac{\sin 50^{\circ}}{1.53}\right)=30^{\circ} \\
& \theta=90-\theta_{2}=60^{\circ}
\end{aligned}
$$

Brewster Angle

There is a special angle, θ_{p}, where no reflection occurs.

What is REALLY happening in reflection \& refraction?
Light is wave...
... an electric (and magnetic) wave

Reflection \& refraction are interactions between the wave's electric field and atoms.

Brewster Angle

wave is absorbed by atom (actually a 'dipole' $\stackrel{\oplus}{\ominus} \stackrel{\oplus}{-}$)
atom oscillates
oscillation produces refracted wave

Parallel to
oscillation, there is no electric field
= no wave

If reflected ray is in this direction, no reflection
occurs!

Brewster Angle

Brewster angle, θ_{p}
occurs when: $\theta_{p}+\theta_{2}=90^{\circ}$

$$
\begin{aligned}
\theta_{2} & =90^{\circ}-\theta_{p} \\
\sin \theta_{2} & =\sin \left(90^{\circ}-\theta_{p}\right) \\
& =\cos \theta_{p}
\end{aligned}
$$

Snell's law: $\sin \theta_{2}=\frac{n_{1}}{n_{2}} \sin \theta_{p}$
Therefore: $\tan \theta_{p}=\frac{n_{2}}{n_{1}}$
Air/glass interface: $\theta_{p}=56^{\circ}$

Brewster Angle = Polarising Angle

Normally, light is made from waves that oscillate in different directions:

Same direction of motion, different oscillation directions

If light only oscillates in one direction, it is polarised

Non-polarised light at the Brewster angle reflects polarised light:
only light component with oscillations perpendicular to atom oscillation.

Brewster Angle

Find the refractive index of a material with a Brewster (polarising) angle in air of 62°.
(A) 1.5
(B) 1.0 $n_{2}=n_{1} \tan \theta_{p}=(1.0) \tan \left(62^{\circ}\right)=1.9$
(C) 1.9
(D) 1.7

Total Internal Reflection

Light moving from medium with high n to low n is bent away from the normal. If the angle of refraction $>90^{\circ}$, total internal reflection occurs.

Light cannot escape the glass.
The incident ray's critical angle is when the angle of refraction $=90^{\circ}$
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
$n_{1} \sin \theta_{c}=n_{2} \sin 90^{\circ} \quad \sin \theta_{c}=\frac{n_{2}}{n 1}$

Total Internal Reflection

The glass prism has $n=1.5$ and is surrounded by air $(n=1)$.

What would happen to the incident light ray if the prism were immersed in water ($n=1.333$)?

Most would exit into the water through the diagonal face and some would be reflected.
(B) Most would be reflected and some would exit into the water through the diagonal face.

$\sin \theta_{c}=\frac{n_{2}}{n 1}$ increase

Total Internal Reflection

A whale's view

Light rays in the red region are from objects above the water.
Light rays outside red region are from objects in the water.

Total Internal Reflection
 Example

A whale's view

What is θ, the half-angle of the cone in which the whale sees above the water?

$$
\theta_{c}=\sin ^{-1}(1 / 1.333)=48.6^{\circ}
$$

Total Internal Reflection

Information for the internet, telephones and television is carried in optical fibres.

Cable has glass core inside 'cladding'.
The cladding has a lower refractive index, n

Total internal reflection at core/cladding interface.

Lighter and more durable than copper wire.

Two wires on right carry same rate of information!

Total Internal Reflection

What is the critical angle for light in a glass with $\mathrm{n}=1.52$ when the glass is immersed in water $(\mathrm{n}=1.333)$.
(A) 61.3°
(B) 41.1°

$$
\theta_{c}=\sin ^{-1}\left(n_{2} / n_{1}\right)
$$

(C) 80.9°

$$
=\sin ^{-1}(1.333 / 1.52)=61.3^{\circ}
$$

(D) none

Total Internal Reflection

What is the critical angle for light in a glass with $\mathrm{n}=1.52$ when the glass is immersed in benzene ($\mathrm{n}=1.50 \mathrm{I}$).
(A) 61.3°
(B) 41.1°

$$
\theta_{c}=\sin ^{-1}\left(n_{2} / n_{1}\right)
$$

$$
=\sin ^{-1}(1.501 / 1.52)=80.9^{\circ}
$$

(D) none

Total Internal Reflection

What is the critical angle for light in a glass with $\mathrm{n}=1.52$ when the glass is immersed in didomethane ($\mathrm{n}=1.738$).
(A) 61.3°
(B) 41.1°
(C) 80.9°
(D) none
$n_{1}(=1.52)>n_{2}(=1.738)$
$\sin ^{-1}(1.738 / 1.52) \quad$ no solution!
no total internal reflection for light moving in glass.

Dispersion

Refraction is the interaction between the light wave and the atoms.

It depends on the frequency of the wave

The refractive index, n, depends on wave frequency.

Different frequencies refract through different angles.

This is dispersion.

Dispersion

Dispersion can be bad:
Lenses focus colours as different places.
"Chromatic aberration"

Dispersion in optical fibres.
Rays take different paths by reflecting at different angles.

Dispersion can be good:
Measuring dispersion in the atmosphere allows GPS devices to correct for atmospheric conditions.

Mirages

Mirages occur when the refractive index, n changes with position.

The ray travels in a curved path.

e.g. A temperature difference produces a density difference.

Causes n to vary.
"Water" on the road on a hot day

Brain assumes ray, i , is straight "see" a reflection of the car, v

Mirages

Robert Krampfs

Experiment of the Week \#143 Mititege

Mirages

Light path over a hot road.

Is the air's refractive index....
(a) increase from left to right
(b) increase from right to left
(c) increase upwards

Light is bending away from the normal
(d) increase downwards
n is higher at the top.

Mirages

Light path over a hot road.

The person sees a mirage that looks like water. It appears to be at:
(a) point A
(c) point C
(b) point B
(d) point D

Mirages

Mirages work by bending light....

What if we bent light completely around an object?

Could we make it invisible?

Research from St Andrew University, UK

Yes! in theory.

Mirages

Mirages

What has been done in the laboratory?
(A) An object has been destroyed with light
(B) An object has been made invisible
(C) An object has been made to absorb light
(D) An object has been made to look like water

Mirages

How was this done?
(A) The material becomes so hot it melts
(B) The material becomes so hot light is reflected from it
(C) The material becomes so hot light passes through it
(D) The material becomes so hot light is bent

Mirages

How does the army truck become invisible to infrared camera?
(A) It becomes hot and bends light
(B) It becomes hot and light passes through the truck
(C) It matches the temperature of the air exactly
(D) It reflects the light.

