Essential Physics I

英語で物理学の

エッセンス I

Lecture I0：23－06－16

Last lecture: review

Oscillation: periodic motion where a force returns the system to equilibrium

Simple harmonic motion (SHM): force is proportional to displacement: $F \propto \Delta x$
(I) Spring: $m \frac{d^{2} x}{d t^{2}}=-k x$
$x(t)=A \cos (\omega t+\phi) \quad w=\sqrt{\frac{k}{m}}$

(2) Torsional pendulum: $I \frac{d^{2} \theta}{d t^{2}}=-\kappa \theta$
$\theta(t)=A \cos \omega t, \quad \omega=\sqrt{\frac{\kappa}{I}}$

Last lecture: Simple Harmonic Motion

(3) Simple pendulum

```
string mass \(\approx 0\) ball's volume \(\approx 0\) (point mass)
```


$$
I \frac{d^{2} \theta}{d t^{2}}=-\tau=-L F_{\mathrm{net}}
$$

$$
F_{\mathrm{net}}=m g \sin \theta
$$

$$
=-m g L \sin \theta
$$

$$
F_{g}=m g
$$

Force not directly proportional to θ

\longrightarrow not SHM

But for small oscillations $\sin \theta \approx \theta$

$$
I \frac{d^{2} \theta}{d t^{2}}=-m g L \theta
$$

Last lecture: Simple Harmonic Motion

(3) Simple pendulum

$$
I \frac{d^{2} \theta}{d t^{2}}=-m g L \theta \quad \longleftrightarrow m \frac{d^{2} x}{d t^{2}}=-k x
$$

$$
\omega=\sqrt{\frac{m g L}{I}}
$$

$$
F_{g}=m g
$$

Simple pendulum, point mass: $I=m L^{2}$

$$
\omega=\sqrt{\frac{m g L}{m L^{2}}}=\sqrt{\frac{g}{L}}
$$

$$
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{L}{g}}
$$

Last lecture: Simple Harmonic Motion

(4) Physical Pendulum

Not a point mass e.g. a leg, punching bag etc
$\omega=\sqrt{\frac{m g L}{I}} \quad$ is still true
but $I \neq m L^{2}$
and $L=$ distance to centre of gravity

Simple Harmonic Motion

A meter stick is suspended from one end and set swinging. Find the period of the resulting oscillations.
(a) 2.3 s

$$
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{I}{m g L}}
$$

(b) 3.2 s
(c) 1.6 s
centre of gravity for stick: $L=L_{0} / 2=50 \mathrm{~m}$
(d) 4.1 s

$$
T=2 \pi \sqrt{\frac{m L_{0}^{2} / 3}{m g L_{0} / 2}}=2 \pi \sqrt{\frac{2 L_{0}}{3 g}}
$$

$I=\frac{m R^{2}}{3}$

$$
=2 \pi \sqrt{\frac{2(1.0 \mathrm{~m})}{3\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}}=1.6 \mathrm{~s}
$$

Simple Harmonic Motion

Energy and SHM

Potential energy for a spring: $U=\frac{1}{2} k x^{2}=\frac{1}{2} k(A \cos \omega t)^{2}$

$$
=\frac{1}{2} k A^{2} \cos ^{2} \omega t
$$

Kinetic energy for a spring: $\quad K=\frac{1}{2} m v^{2}=\frac{1}{2} m(-\omega A \sin \omega t)^{2}$

$$
\begin{aligned}
& =\frac{1}{2} m \omega^{2} A^{2} \sin ^{2} \omega t \\
& =\frac{1}{2} k A^{2} \sin ^{2} \omega t
\end{aligned}
$$

Total energy: $E=U+K=\frac{1}{2} k A^{2} \cos ^{2} \omega t+\frac{1}{2} k A^{2} \sin ^{2} \omega t=\frac{1}{2} k A^{2}$

Simple Harmonic Motion

Energy and SHM

Simple Harmonic Motion

In real oscillating systems, air resistance \& friction dissipate (remove) the oscillation energy.

We saw this before for the skateboarder

The energy loss causes the amplitude, A, to decrease.

The motion is said to be damped.

Simple Harmonic Motion

If only a little energy is lost each oscillation, the system behaves the same as for the undamped case - but with a gradual loss in A.

Often, the damping force is proportional to v :

$$
F_{d}=-b v=-b \frac{d x}{d t}
$$

Therefore:
$m \frac{d^{2} x}{d t^{2}}=-k x-b \frac{d x}{d t}$

amplitude damping

Solution: $\quad x(t)=A e^{-b t / 2 m} \cos (\omega t+\phi)$

Simple Harmonic Motion

For weak damping, ω is unchanged:
$\omega=\sqrt{k / m}$

For stronger damping, the motion slows.
ω becomes lower.

If there is oscillation, the system is underdamped.

Velocity

Simple Harmonic Motion

If the effect of the damping force equals that of the spring force
the system is critically damped.

It returns to equilibrium without oscillation.

Displacement

Velocity

Simple Harmonic Motion

If the damping is stronger
the system is overdamped.

Damping dominates and return to equilibrium is slower.

Displacement

Velocity

Simple Harmonic Motion

Velocity

underdamped
$-b v \ll-k x$
critically damped
$-b v \simeq-k x$
overdamped
$-b v \gg-k x$

There are many real damped oscillators.
e.g. car shock absorbers damp oscillations to produce a quick return to equilibrium after a bump.

Simple Harmonic Motion

Oscillations can also be driven

e.g. pushing a child on a swing

Driving force: $\quad F_{d}=F_{0} \cos \omega_{d} \neq$
Then:

$$
m \frac{d^{2} x}{d t^{2}}=-k x-b \frac{d x}{d t}+F_{\text {damping }}^{F_{0} \cos \omega_{d} t} \underset{\text { driving }}{ }
$$

Solution: $\quad x=A \cos \left(\omega_{d} t+\phi\right)$
but:

$$
A(\omega)=\frac{F_{0}}{m \sqrt{\left(\omega_{d}^{2}-\omega_{0}^{2}\right)^{2}+b^{2} \omega_{d}^{2} / m^{2}}}
$$

Simple Harmonic Motion

$A(\omega)=\frac{F_{0}}{m \sqrt{\left(\omega_{d}^{2}-\omega_{0}^{2}\right)^{2}+b^{2} \omega_{d}^{2} / m^{2}}}$

How does A change with driving force?

As driving force increases, A increases.... then decreases....

Simple Harmonic Motion

If the system is underdamped, A has a maximum at a some driving frequency.

At this frequency, the amplitude gets very large.

This is known as resonance.

Driving forces may be accidental, e.g. wind or earthquakes.
It is very important for engineers to know when resonance will occur.....

Simple Harmonic Motion

What is a wave?

0

This is a wave.

2s M WMMMMMMMMMMMMMMMMMMWN

$5^{2}{ }^{2}$ inmumumumumumum (ummen

A small disturbance moves along the spring.
Each part of the spring makes a small oscillation, then returns to equilibrium

What is a wave?

Equilibrium

The spring makes a small oscillation as the wave passes.

It then returns to its normal state.

The wave carries the energy of the oscillation onto the next part of the spring.

Equilibrium

A wave moves energy, but not matter.

What is a wave?

True or false?

In order for Ryoma to hear Taka, air molecules must move from Ryoma's lips to Taka's ear?
(A) True
(B) False

A wave moves energy,
but not matter.

Types of wave

Two types of waves:
this lecture
mechanical
disturbance in a medium,
e.g. water, air, a spring, earth, violin string....
electromagnetic

no medium

Types of wave

mechanical
Two types of waves:

Transverse Wave

Longitudinal Wave

Transverse
oscillation perpendicular to wave motion e.g. water
oscillation parallel to wave motion e.g. sound, water

Longitudinal

Types of wave

transverse wave

compression expansion

longitudinal wave

compression

expansion

Types of wave

A wave with longitudinal and transverse components

PHYSICS-ANIMATIONS.COM
e.g. a water wave

Types of wave

A single disturbance is a pulse

Ongoing disturbances are a continuous wave

In-between is a wave train

Wave properties

Amplitude: maximum value of the disturbance

maximum height above water level

e.g. spring

maximum displacement

e.g. sound

maximum change in air pressure

Wave properties

e.g. water wave

wavelength: λ

distance over which the wave pattern repeats
e.g. spring

e.g. sound

period: T

time for one oscillation
frequency: f
number of oscillations / time:

$$
f=\frac{1}{T}
$$

Wave properties

wave speed:

speed of disturbance along the medium:

$$
v=\frac{\lambda}{T}=\lambda f
$$

If disturbance is simple harmonic oscillation:

$$
y(x=0, t)=A \cos (\omega t) \quad \longrightarrow \quad y(x, t)=A \cos (k x \pm \omega t)
$$

when $t=T: \quad \omega T=2 \pi \quad \longrightarrow \omega=\frac{2 \pi}{T}$
when $x=\lambda: k \lambda=2 \pi$
$\longrightarrow k=\frac{2 \pi}{\lambda}$
wave number

$$
v=\frac{\lambda}{T}=\frac{2 \pi / k}{2 \pi / \omega}=\frac{\omega}{k}
$$

Wave properties

A seismograph (measures earthquake) located at 1200 km from an earthquake detects seismic waves 5.0 minutes after the quake.

The seismograph oscillates in step (same time) with the waves, at 3.I Hz.

What is the wavelength?
(a) 1.3 km
(b) 77.4 km
(c) 0.08 km
(d) 0.001 km

Wave properties

A seismograph (measures earthquake) located at 1200 km from an earthquake detects seismic waves 5.0 minutes after the quake.

The seismograph oscillates in step (same time) with the waves, at 3.I Hz.

What is the wavelength?
(a) 1.3 km

$$
\lambda=\frac{v}{f}
$$

(b) 77.4 km
(c) 0.08 km
(d) 0.001 km

$$
\begin{aligned}
& =\frac{d}{t f}=\frac{1.2 \times 10^{6}}{\left(3 \times 10^{2} \mathrm{~s}\right)(3.1 \mathrm{~Hz})} \\
& =1.3 \times 10^{3} \mathrm{~m}=1.3 \mathrm{~km}
\end{aligned}
$$

Wave on a string

Velocity

mass / unit length: μ
Assume perturbation is small:
(I) tension constant
(2) $\sin \theta \simeq \theta$
$F_{\text {net }}=2 F_{T} \sin \theta=\frac{m v^{2}}{R}=\frac{2 \theta R \mu v^{2}}{R}=2 \theta \mu v^{2} \longrightarrow v=\sqrt{\frac{F}{\mu}}$
circular motion

$$
m=\mu \Delta s=2 \theta R \mu
$$

Wave on a string

 QuizWhich curve best represents the variation of wave velocity with tension in a vibrating string?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

$$
v=\sqrt{\frac{F}{\mu}}
$$

Wave on a string

\xrightarrow{v} wave velocity

Power force x velocity $=$?

$$
u=\frac{d y}{d t}=A \omega \sin (k x-\omega t)
$$

$$
\tan \theta \simeq \theta=\frac{d y}{d x}=-k A \sin (k x-\omega t)
$$

$$
P=-F \sin \theta u \simeq-F \theta u=F \omega k A^{2} \sin ^{2}(k x-\omega t)
$$

$$
\bar{P}=\frac{1}{2} F \omega k A^{2}
$$

Wave on a string

\xrightarrow{v} wave velocity

Power

force x velocity
$\bar{P}=\frac{1}{2} F \omega k A^{2}$
Since: $\quad v=\sqrt{\frac{F}{\mu}} \longrightarrow F=v^{2} \mu$
and: $\quad v=\frac{\omega}{k}$
So: $\quad F=\frac{\omega}{k} v \mu \longrightarrow \bar{P}=\frac{1}{2} F \omega k A^{2}=\frac{1}{2} \mu \omega^{2} A^{2} v$

Wave on a string

The equation for particle displacement in a medium where there is a simple harmonic progressive wave is:

$$
y(x, t)=(2 / \pi) \sin \pi(x-4 t)
$$

units are SI.
For a particle at $\mathrm{x}=10 \mathrm{~m}$ when $\mathrm{t}=2 \mathrm{~s}$, the particle speed is:
(a) 0
(b) $2 \mathrm{~m} / \mathrm{s}$

Waves move energy, not matter:
(c) $4 / \pi \mathrm{m} / \mathrm{s}$
(d) $4 \mathrm{~m} / \mathrm{s}$
(e) $8 \mathrm{~m} / \mathrm{s}$

Velocity of particle \neq wave velocity, v
$=$ vertical velocity, u

$$
\begin{aligned}
u=\frac{d y}{d t} & =\frac{2}{\pi}(\cos \pi(x-4 t))(-4 \pi) \\
& =\frac{2}{\pi}(-4 \pi) \cos (2 \pi)=-8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Wave on a string

$$
\text { Intensity } \quad I=\frac{P}{A} \quad \mathrm{~W} / \mathrm{m}^{2}
$$

plane wave
Plane wave: area constant with distance
A = Area perpendicular to wave velocity

Spherical wave: $\quad I=\frac{P}{A}=\frac{P}{4 \pi r^{2}}$

spherical wave

Wave energy spread out over larger and larger area.

Intensity decreases further from the source.

Wave on a string

 QuizTwo waveforms of the same frequency are moving to the right with velocity, v . The power P_{A} transmitted by wave A is equal to:
(a) $2 P_{B} / 3$
(b) $9 P_{B} / 4$
(c) $\sqrt{2} P_{B} / \sqrt{3}$
(d) $4 P_{B} / 9$
(e) P_{B}

$$
\begin{gathered}
\bar{P}=\frac{1}{2} F \omega k A^{2} \\
v=\sqrt{\frac{F}{\mu}} \\
\frac{P_{A}}{P_{B}}=\frac{A_{A}^{2}}{A_{B}^{2}}=\frac{4}{9}
\end{gathered}
$$

$y, \mathrm{~cm}$

Sound waves

sound wave

Longitudinal wave

Travels through solid, liquid \& gases
In air, disturbance is a change in pressure and density.

$$
v=\sqrt{\frac{\gamma P}{\rho}} \quad \text { Air: } \quad \gamma=\frac{7}{5} \quad \text { Helium: } \gamma=\frac{5}{3}
$$

Sound intensity measured in decibels

$$
\beta=10 \log \left(\frac{I}{I_{0}}\right) \quad \mathrm{dB}
$$

$$
I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}
$$

Sound waves

A loud speaker is adjusted so that it produces a sound $2 \times$ the intensity of its original sound.

What is the change in the sound level, beta?
(a) 2 dB
(b) 30 dB
(c) 20 dB
(d) 3 dB

Sound waves

A loud speaker is adjusted so that it produces a sound $2 \times$ the intensity of its original sound.

What is the change in the sound level, beta?
(a) 2 dB

$$
\beta=10 \log \left(\frac{I}{I_{0}}\right)
$$

(b) 30 dB

$$
\beta_{2}-\beta_{1}=10 \log \left(\frac{I_{2}}{I_{0}}\right)-10 \log \left(\frac{I_{1}}{I_{0}}\right)
$$

$$
=10 \log I_{2}-10 \log I_{0}-10 \log I_{1}+10 \log I_{0}
$$

(d) 3 dB

$$
\begin{aligned}
& =10 \log I_{2}-10 \log I_{1} \\
& =10 \log \left(\frac{I_{2}}{I_{1}}\right)=10 \log (2)=3 \mathrm{~dB}
\end{aligned}
$$

Interference

superposition principal: most waves can be added

wave I + wave 2 = resulting wave

wave I + wave 2 cancel
Destructive interference
waves coincide
Constructive interference

Interference

superposition principal: most waves can be added

Interference

Quiz

In graph A, 2 waves a shown at time t .
Which curve in B represents the wave from their superposition?
(a) 1
(b) 2
(c) 3
(d) The resultant is 0 for all x
(e) none

Reflection

When a wave hits something it cannot travel through, it must reflect otherwise, where would the energy go?

Reflection

Reflection

loose end: ring free to move on pole
Wave pulse pushes ring up.

Wave height is at maximum at end.

Reflected wave not inverted.

Standing waves

String with 2 fixed ends

in-coming wave
in-coming wave \& reflected wave

If exact number of half-wavelengths between fixed ends:

superposition

Standing wave

Standing waves

Mathematically:

$y(x, t)=y_{1}+y_{2}=A[\cos (k x-\omega t)-\cos (k x+\omega t)]$

in-coming

 reflectedsince: $\quad \cos \alpha-\cos \beta=-2 \sin \left[\frac{1}{2}(\alpha+\beta)\right] \sin \left[\frac{1}{2}(\alpha-\beta)\right]$
Therefore: $\quad y(x, t)=2 A \sin k x \sin \omega t$

$$
\begin{aligned}
& \alpha=k x-\omega t \\
& \beta=k x+\omega t
\end{aligned}
$$

amplitude depends on position
simple harmonic motion

Standing waves

Mathematically:

$y(x, t)=y_{1}+y_{2}=A[\cos (k x-\omega t)-\cos (k x+\omega t)]$
in-coming
reflected
since: $\quad \cos \alpha-\cos \beta=-2 \sin \left[\frac{1}{2}(\alpha+\beta)\right] \sin \left[\frac{1}{2}(\alpha-\beta)\right]$
Therefore: $\quad y(x, t)=2 A(\sin k x) \sin \omega t$
Amplitude 0 at $\mathrm{x}=0, \mathrm{x}=\mathrm{L}$: $\sin m \pi=0$
$k L=m \pi \longrightarrow L=\frac{m \lambda}{2} \quad m=1,2,3, \ldots$.

Standing waves

$\stackrel{L}{\longleftrightarrow} L=\frac{m \lambda}{2} \quad \mathrm{~m}=1$

$\mathrm{m}=2$
$\mathrm{m}=3$
$\mathrm{m}=4$
$\mathrm{m}=5$

Standing waves

The wavelengths of standing waves are called harmonics or modes $L=\frac{m \lambda}{2} \quad \mathrm{~m}$ is the mode number

$m=I$ is the fundamental mode, the longest possible standing wave m > I are overtones

nodes do not move
anti-nodes oscillate between maximum and minimum

Standing waves

Quiz

A standing wave is shown below.
If the period of the wave is T , the shortest time it takes for the wave to go from the solid curve to the dashed curve is
(a) $\mathrm{T} / 4$
(b) $\mathrm{T} / 3$
(c) $\mathrm{T} / 2$
(d) $3 \mathrm{~T} / 4$
(e) none

Standing waves

A string of linear density μ and length L is under a constant tension $\mathrm{T}=\mathrm{mg}$. One end of the string is attached to a tunable harmonic oscillator. A resonant standing wave is observed
(a) at any frequency
(b) when $f=\frac{n}{2 L} \sqrt{\frac{m g}{\mu}}$
when $\mathrm{n}=\mathrm{I}, 2,3$...

(c) when $f=\frac{n}{L} \sqrt{\frac{m g}{\mu}} \quad$ when $\mathrm{n}=\mathbf{I}, 2,3 .$.
(d) when $f=\frac{n v_{s}}{2 L}$ when $\mathrm{n}=1,2,3 \ldots . v_{s}$ is speed of sound

Standing waves

A string of linear density μ and length L is under a constant tension $\mathrm{T}=\mathrm{mg}$. One end of the string is attached to a tunable harmonic oscillator. A resonant standing wave is observed

$$
\begin{aligned}
v=\sqrt{\frac{F_{T}}{\mu}} & =\lambda f \\
& =\frac{2 L}{n} f
\end{aligned}
$$

$f=\frac{n}{2 L} \sqrt{\frac{m g}{\mu}}$

Standing waves

Musical instruments
Stringed instruments (e.g. violin, piano, guitar) have standing waves like those just described (2 fixed ends).

Wind instruments (e.g. organ, bassoon, flute) make standing waves in air columns, which have open (not fixed) ends.

Open ends are fixed by pressure
They are anti-nodes (maximum amplitude)

Standing waves

Musical instruments
Stringed instruments (e.g. violin, piano, guitar) have standing waves like those just described (2 fixed ends).

Wind instruments (e.g. organ, bassoon, flute) make standing waves in air columns, which have open (not fixed) ends.

$$
L=\frac{m \lambda}{4} \quad \mathrm{~m}=\mathrm{I}, 3,5 \ldots
$$

Standing waves

Quiz

The figure represents a string of length L, fixed at both ends, vibrating in several harmonics.

Which string shows the 3rd harmonic?
(a) A
(b) B
(c) C
(d) D
(e) E

$$
\longrightarrow L=\frac{m \lambda}{2} \quad m=I, 2,3, \ldots
$$

Standing waves

The figure shows a standing wave in a pipe that is closed at one end. The frequency associated with this wave pattern is called the
(a) Ist harmonic
(b) 2nd harmonic
(c) 3rd harmonic

$$
L=\frac{m \lambda}{4} \quad \mathrm{~m}=1,3,5 \ldots
$$

(e) 5th harmonic

Standing waves

Quiz

Of the sound sources shown, that which is vibrating with its first harmonic is the ...
(a) whistle
(b) organ pipe
(c) string

(d) rod
(e) spring

