The Physics and Algorithms of Enzo

John Wise (Georgia Tech)

Most of the slides are originally written by Greg Bryan (Columbia)

Enzo Workshop – 21 November 2014

Introducing "Enzo

- Block-structured AMR + N-body
- Proper or comoving coordinates
- N-body: Adaptive particle-mesh solver
- (Magneto-)Hydrodynamics:
 - High-resolution shock capturing scheme
 - OR Finite differencing
- Chemical network solver (H, He, H₂, HD)
- Star & BH formation and feedback
- Radiative transfer
 - Adaptive (angular) ray tracing
 - OR Flux-limited diffusion

I. Hydrodynamics

Fluid Equations - grid::SolveHydroEquations

$$\begin{split} \text{Mass conservation} & \frac{\partial \rho}{\partial t} + \frac{1}{a} \mathbf{v} \cdot \nabla \rho = -\frac{1}{a} \rho \nabla \cdot \mathbf{v} \\ \text{Momentum} & \frac{\partial \mathbf{v}}{\partial t} + \frac{1}{a} (\mathbf{v} \cdot \nabla) \mathbf{v} = -\frac{\dot{a}}{a} \mathbf{v} - \frac{1}{a\rho} \nabla p - \frac{1}{a} \nabla \phi, \\ \text{Energy conservation} & \frac{\partial E}{\partial t} + \frac{1}{a} \mathbf{v} \cdot \nabla E = -\frac{\dot{a}}{a} (3\frac{p}{\rho} + \mathbf{v}^2) - \frac{1}{a\rho} \nabla \cdot (p\mathbf{v}) - \frac{1}{a} \mathbf{v} \cdot \nabla \phi + \Gamma - \Lambda. \\ & E = e + \frac{1}{2} \mathbf{v}^2, \\ \text{Ideal Gas EOS} & e = p / \left[(\gamma - 1) \rho \right], \\ \text{Self-gravity} & \nabla^2 \phi = \frac{4\pi G}{a} (\rho_{total} - \rho_0). \end{split}$$

Field names: Density, Pressure, TotalEnergy, InternalEnergy, Velocity1, Velocity2, Velocity3

grid class: accessing the fields – grid.h

• In grid class:

- BaryonFields[] array of pointers to each field
 - Fortran (row-major) ordering within each field
- GridRank dimensionality of problem
- GridDimensions[] dimensions of this grid
- GridStartIndex[] Index of first "active" cell (usually 3)
 - First (and last) three cells are ghost or boundary zones

```
int DensNum = FindField(Density, FieldType, NumberOfBaryonFields);
int Vel1Num = FindField(Velocity1, FieldType, NumberOfBaryonFields);
```

```
for (k = GridStartIndex[2]; k <= GridEndIndex[2]; k++) {
  for (j = GridStartIndex[1]; j <= GridEndIndex[1]; j++) {
    for (i = GridStartIndex[0]; i <= GridEndIndex[0]; i++) {
      BaryonField[Vel1Num][GINDEX(i,j,k)] *= BaryonField[DensNum][GINDEX(I,j,k)];
    }
}</pre>
```

Enzo file name convention

General C++ routines:

- Routine name: EvolveLevel(...)
- In file: EvolveLevel.C
- One routine per file!
- grid methods:
 - Noutine name:grid::MyName(...)
 - In file: Grid_MyName.C

Fortran routines:

- Routine name: intvar(...)
- In file: intvar.src
 - .src is used because routine is fed first through C preprocessor

PPM Solver: grid::SolvePPM_DE

- HydroMethod = 0
- PPM: e.g. mass conservation equation
 - Flux conservative form:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho v}{\partial x} = 0$$

$$P_j^n = \rho(x_j, t^n)$$
Mass flux across j+1/2 boundary
In discrete form:

$$\rho_j^{n+1} = \rho_j^n + \Delta t \left(\frac{\overline{\rho_{j+1/2}} \overline{v_{j+1/2}} - \overline{\rho_{j-1/2}} \overline{v_{j-1/2}}}{\Delta x_j} \right)$$

How to compute mass flux?

D

- Note: multi-dimensions handled by operating splitting
 - > grid::xEulerSweep.C, grid::yEulerSweep.C, grid::zEulerSweep.C

Grid::SolvePPM_DE

PPM: 1D hydro update: grid::xEulerSweep

- Copy 2D slice out of cube
- Compute pressure on slice (pgas2d)
- Calculate diffusion/steepening coefficients (calcdiss)
- Compute Left and Right states on each cell edge (inteuler)
- Solve Reimann problem at each cell edge (twoshock)
- Compute fluxes of conserved quantities at each cell edge (euler)
- Save fluxes for future use
- Return slice to cube

PPM: reconstruction: inteuler

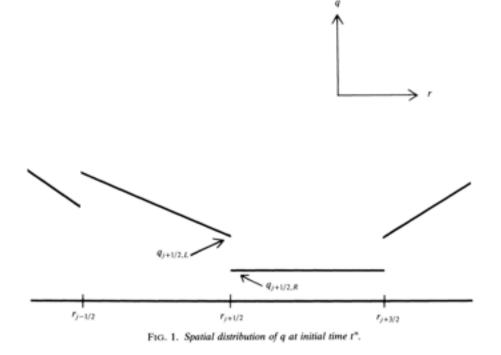
Piecewise parabolic representation:

$$q_{j}(x) = q_{L,j} + \tilde{x}(\Delta q_{j} + q_{6,j}(1 - \tilde{x})),$$

$$\tilde{x} \equiv \frac{x - x_{j-1/2}}{\Delta x_{j}}, \qquad x_{j-1/2} \leq x \leq x_{j+1/2}.$$

- Coefficients (Δq and q_6) computed with mean q and q_L , q_R .
- For smooth flow (like shown above), this is fine, but can cause a problem for discontinuities (e.g. shocks)
- q_L , q_R are modified to ensure monotonicity (no *new* extrema)

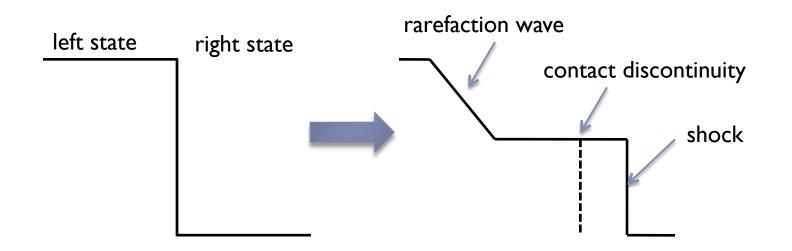
PLM: reconstruction



- Piecewise linear method
- More diffusive reconstruction scheme, but more stable.

PPM: Godunov method: twoshock

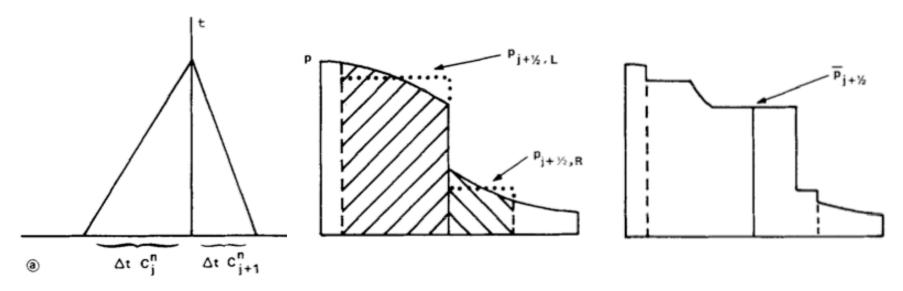
To compute flux at cell boundary, take two initial constant states and then solve Riemann problem at interface



- Given solution, can compute flux across boundary
- Advantage: correctly satisfies jump conditions for shock

PPM: Godunov method: inteuler, twoshock

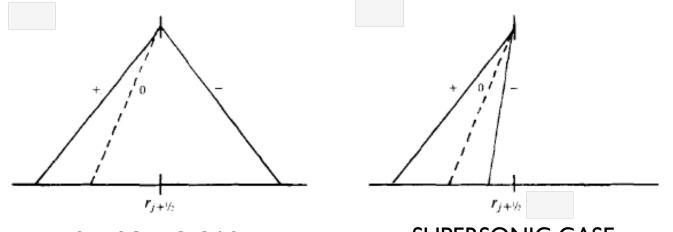
• For PPM, compute left and right states by averaging over characteristic region (causal region for time step Δt)



 Average left and right regions become constant regions to be feed into Riemann solver (twoshock).

PPM: Eulerian corrections: euler

- Eulerian case more complicated because cell edge is fixed.
 - Characteristic region for fixed cell more complicated:



SUBSONIC CASE

- SUPERSONIC CASE
- Note that solution is not known ahead of time so two-step procedure is used (see Collela & Woodward 1984 for details)

Other Riemann solvers

• HLL: (Harten-Lax-Leer)

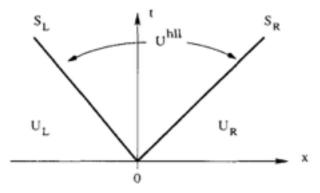


Fig. 10.3. Approximate HLL Riemann solver. Solution in the *Star Region* consists of a single state \mathbf{U}^{hll} separated from data states by two waves of speeds S_L and S_R

• HLLC: HLL but considering the contact wave

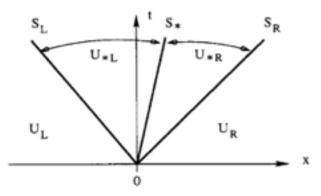


Fig. 10.4. HLLC approximate Riemann solver. Solution in the *Star Region* consists of two constant states separated from each other by a middle wave of speed S.

Difficulty with very high Mach flows

- PPM is flux conservative so natural variables are mass, momentum, total energy
- Internal energy (e) computed from total energy (E):

$$e = E - \frac{1}{2}\mathbf{v}^2$$

- Problem can arise in very high Mach flows when E >> e
 - e is difference between two large numbers
- Not important for flow dynamics since p is negligible
 - But can cause problems if we want accurate temperatures since $T \alpha e$

Dual Energy Formalism: grid::ComputePresureDualEnergyFormalism

Solution: Also evolve equation for internal energy:

$$\frac{\partial e}{\partial t} + \frac{1}{a} \mathbf{v} \cdot \nabla e = \frac{p}{a\rho} \nabla \cdot \mathbf{v}$$

Select energy to use depending on ratio e/E:

$$p = \begin{cases} \rho(\gamma - 1)(E - \mathbf{v}^2/2), & (E - \mathbf{v}^2/2)/E > \eta_1; \\ \rho(\gamma - 1)e, & (E - \mathbf{v}^2/2)/E < \eta_1. \end{cases}$$

- Select with DualEnergyFormalism = 1
- Use when $v/c_s > \sim 20$
- Q:Why not just use e?
 - A: Equation for e is not in conservative form (source term).
 - Source term in internal energy equation causes diffusion

Zeus Solver: grid::ZeusSolver

Traditional finite difference method

- Artificial viscosity (see Stone & Norman 1992)
- HydroMethod = 2

D

Source step: ZeusSource

Pressure (and gravity) update:
$$v_j^{n+a} = v_j^n - \frac{\Delta t}{\Delta x_j} \frac{p_j^n - p_{j-1}^n}{(\rho_j^n + \rho_{j-1}^n)/2}$$
Artificial viscosity: $v_j^{n+b} = v_j^{n+a} - \frac{\Delta t}{\Delta x_j} \frac{q_j^{n+a} - q_{j-1}^{n+a}}{(\rho_j^n + \rho_{j-1}^n)/2}$
 $q_j = \begin{cases} Q_{AV}\rho_j(v_{j+1} - v_j)^2 & \text{if}(v_{j+1} - v_j) < 0\\ 0 & \text{otherwise} \end{cases}$

• Compression heating:
$$e_j^{n+c} = e_j^{n+b} \left(\frac{1 - (\Delta t/2)(\gamma - 1)(\nabla \cdot \mathbf{v})_j}{1 + (\Delta t/2)(\gamma - 1)(\nabla \cdot \mathbf{v})_j} \right)$$

Zeus Solver: grid::ZeusSolver

Transport step: Zeus_xTransport

e.g.
$$\rho_j^{n+d} = \rho_j^n - \frac{\Delta t}{\Delta x} (v_{j+1/2}^{n+c} \rho_{j+1/2}^* - v_{j-1/2}^{n+c} \rho_{j-1/2}^*)$$

- Note conservative form (transport part preserves mass)
- Note v_{j+1} is face-centered so is really at cell-edge, but density needs to be interpolated. Zeus uses an upwinded van Leer (linear) interpolation:

$$q_j(x) = q_{L,j} + \tilde{x}(\Delta q_j)$$

- Similarly for momentum and energy (and y and z)
 - Zeus_yTransport, Zeus_zTransport

Zeus Solver: grid::ZeusSolver

- PPM is more accurate, slower but Zeus is faster and more robust.
 - PPM often fails ("dnu < 0" error) when fast cooling generates large density gradients.
 - Try out new hydro solvers in Enzo 2.0!
- Implementation differences with PPM:
 - Internal energy equation only
 - In code, TotalEnergy field is really internal energy (ugh!)
 - Velocities are face-centered
 - BaryonField[Vel1Num][GINDEX(i,j,k)] really "lives" at i-1/2

II. Block Structured AMR

AMR: EvolveHierarchy

- Root grid NxNxN, so $\Delta x = DomainWidth/N$
- Level L defined so $\Delta x = \text{DomainWidth}/(\text{N2}^{\text{L}})$
- > Starting with level 0, grid advanced by Δt
 - Main loop of EvolveHierarchy looks (roughly) like this:

```
InitializeHierarchy
While (Time < StopTime)
begin
  dt = ComputeTimeStep(0)
  EvolveLevel(0, dt)
  Time = Time + dt
  CheckForOutput(Time)
end</pre>
```

EvolveLevel does the heavy lifting

Þ

Time Step: grid::ComputeTimeStep

Timestep on level L is minimum of constraints over all level L grids:

$$\Delta t_{hydro} = \min\left(\kappa_{hydro}\frac{a\Delta x}{c_s + |v_x|}\right)_L$$
$$\Delta t_{dm} = \min\left(\kappa_{dm}\frac{a\Delta x}{v_{dm,x}}\right)_L,$$
$$\Delta t_{exp} = f_{exp}\left(\frac{a}{\dot{a}}\right),$$
$$\Delta t_{accel} = \min\left(\sqrt{\frac{\Delta x}{\ddot{g}}}\right)_L$$

 κ_{hydro} CourantSafetyFactor

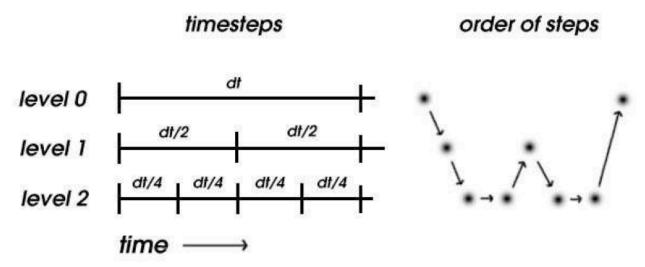
 κ_{dm} ParticleCourantSafetyFactor

 f_{exp} MaximumExpansionFactor

+ others (e.g. MHD, FLD, etc.)

AMR: EvolveLevel

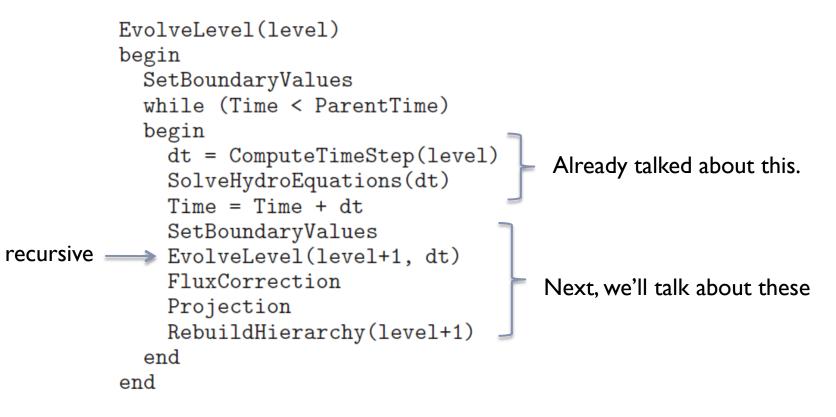
Levels advanced as follows:



- Timesteps may not be integer ratios
 - (Diagram assumes Courant condition dominates and sound speed is constant so: dt $\alpha \Delta x$)
- This algorithm is defined in EvolveLevel

Advance grids on level: EvolveLevel

The logic of EvolveLevel is given (roughly) as:



BC's: SetBoundaryConditions

Setting "ghost" zones around outside of domain

- grid::SetExternalBoundaryValues
- Choices: reflecting, outflow, inflow, periodic
- Only applied to level 0 grids (except periodic)
- Otherwise, two step procedure:
 - Interpolate ghost (boundary) zones from level L-1 grid
 - grid::InterpolateBoundaryFromParent
 - Linear interpolation in time (OldBaryonFields)
 - Spatial interpolation controlled by InterpolationMethod
 - SecondOrderA recommended, default (3D, linear in space, monotonic)
 - Copy ghost zones from sibling grids

> grid::CheckForOverlap and grid::CopyZonesFromGrid

Projection: grid::ProjectSolutionToParentGrid

- Structured AMR produces redundancy:
 - coarse and fine grids cover same region
- Need to restore consistency
- Correct coarse cells once grids have all reach the same time:

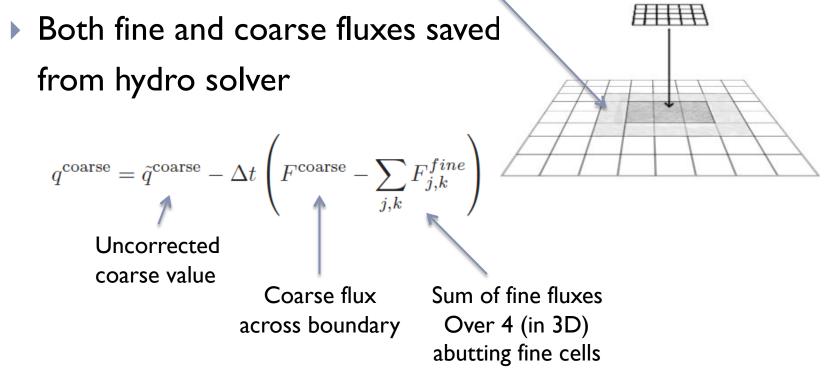
$$q^{\text{coarse}} = r^{-d} \sum q_{i,j,k}^{\text{fine}}$$

Flux Correction:

grid::CorrectForRefinedFluxes

Mismatch of fluxes occurs around boundary of fine grids

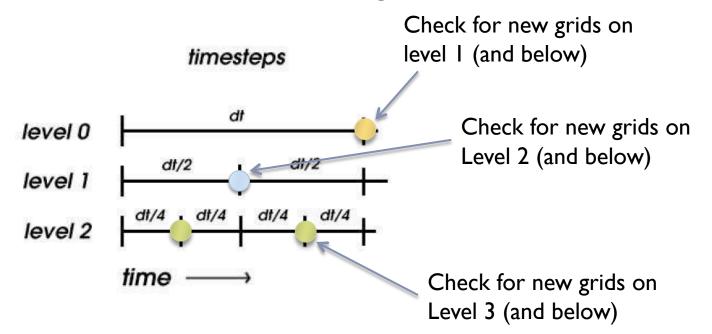
Coarse cell just outside boundary used coarse fluxes but coarse cell inside used fine fluxes



Rebuilding the Hierarchy: RebuildHierarchy

D

Need to check for cells needing more refinement



Refinement Criteria - grid::SetFlaggingField

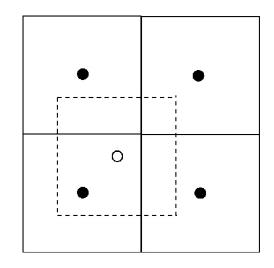
Many ways to flag cells for refinement

- CellFlaggingMethod =
 - 1 refine by slope
 2 refine by baryon mass
 3 refine by shocks
 4 refine by particle mass
 6 refine by Jeans length
 7 refine if cooling time < cell width/sound speed
 11 refine by resistive length
 12 refine by defined region "MustRefineRegion"
 13 refine by metallicity</pre>
- Then rectangular grids must be chosen to cover all flagged cells with minimum "waste"
 - Done with machine vision technique
 - Looks for edges (inflection points in number of flagged cells)
 - ProtoSubgrid class

III. Gravity

Self-Gravity (SelfGravity = 1)

- Solve Poisson equation
- PrepareDensityField
 - BaryonField[Density] copied to GravitatingMassField
 - Particle mass is deposited in 8 nearest cells (CIC)
 - Particle position advanced by ¹/₂ step
 - DepositParticleMassField
- Root grid (level 0):
 - Potential solved with FFT $\tilde{\phi}(k) = G(k)\tilde{\rho}(k).$
 - ComputePotentialFieldLevelZero
 - Potential differenced to get acceleration
 - grid::ComputeAccelerationField



Self-Gravity

Subgrids:

- Potential interpolated to boundary from parent
 - Grid::PreparePotentialField
- Each subgrid then solves Poisson equation using multigrid
 - Grid::SolveForPotential
- Note: this has two issues:
 - Interpolation errors on boundary can propagate to fine levels
 - □ Generally only an issue for steep potentials (point mass)
 - □ Ameliorated by having 6 ghost zones for gravity grid
 - Subgrids can have inconsistent potential gradients across boundary
 - Improved by copying new boundary conditions from sibilings and resolving the Poisson equation (PotentialIterations = 4 by default)
 - More accurate methods in development

Other Gravitational sources – grid::ComputeAccelerationFieldExternal

Can also add fixed potential:

- UniformGravity constant field
- PointSourceGravity single point source
- ExternalGravity NFW profile

IV. Particles

N-body dynamics

- Particles contribute mass to GravitatingMassField
- Particles accelerated by AccelerationField
 - Interpolated from grid (from 8 nearest cells)
- Particles advanced using leapfrog

 $x^{n+1/2} = x^n + (\Delta t/2)v^n$ $v^{n+1} = v^n + \Delta t a^{n+1/2}$ $x^{n+1} = x^{n+1/2} + (\Delta t/2)v^{n+1}$

- > grid::ComputeAccelerations
- Particles stored in the locally most-refined grid
 - ParticlePosition, ParticleVelocity, ParticleMass
- Tracer particles (massless) also available