The Physics and
Algorithms of Enzo

John Wise (Georgia Tech)

Enzo Workshop — 21 November 2014

enzo-project.org

Introducing %&Zo

Block-structured AMR + N-body

Proper or comoving coordinates

N-body: Adaptive particle-mesh solver

(Magneto-)Hydrodynamics:

® High-resolution shock capturing scheme
® OR Finite differencing

® Chemical network solver (H, He, H, HD)
® Star & BH formation and feedback

® Radiative transfer

® Adaptive (angular) ray tracing

® OR Flux-limited diffusion

[. Hydrodynamics

Fluid Equations - grid: :SolveHydroEquations

0 1 1
Mass conservation e + —v Vp=——pV v
ot a
9] 1 :
Momentum M (v V)v = _a, —Vp B —VC)
conservation ot a ap
oF 1 1, 1 |
Energy conservation —- + —V- VE = ——(31L +v?) — —V- (pv) — =v-Vo+T — A.
, a a p ap a
1 .
EF=e+ §V2,
Ideal Gas EOS e=p/[(v—1)pl,
5 4r@G
Self—gravity vz(D i (ptotal — PO)
a

Field names: Density, Pressure, TotalEnergy, InternalEnergy,
Velocityl, Velocity2, Velocity3

orid class: accessing the fields — grid.h

» In grid class:
BaryonFields[] — array of pointers to each field
Fortran (row-major) ordering within each field
GridRank — dimensionality of problem
GridDimensions[] — dimensions of this grid

GridStartIndex[] — Index of first“active” cell (usually 3)
First (and last) three cells are ghost or boundary zones

1nt DensNum
1int VellNum

FindField(Density, FieldType, NumberOfBaryonFields);
FindField(Velocityl, FieldType, NumberOfBaryonFields);

for (k = GridStartIndex[2]; k <= GridEndIndex[2]; k++) {
for (J = GridStartIndex[1]; j <= GridEndIndex[1]; j++) {
for (1 = GridStartIndex[@]; 1 <= GridEndIndex[0]; i1++) {
BaryonField[Vel1Num] [GINDEX(1,Jj,k)] *= BaryonField[DensNum][GINDEX(I, j,k)];
}
¥
¥

Enzo file name convention

» General C++ routines:
Routine name: Evolvelevel(...)
In file: EvolveLevel.C
One routine per file!

» grid methods:
Routine name: grid: :MyName(...)
In file: Gr1d_MyName. C

» Fortran routines:

Routine name: intvar(...)
In file: intvar.src

.src is used because routine is fed first through C preprocessor

PPM Solver: grid: :SolvePPM_DE
» HydroMethod = 0@

» PPM: e.g. mass conservation equation

Flux conservative form:

n __ n
dp 0 pv P = /0(513_7', t)
— 4+ —=0
ot Ox Mass flux across j+1/2 boundary

In discrete form: /

n—+1 n 4+ At (m_ ﬁj—l/QT)j—l/2>

Pj = Pj
Alj

How to compute mass flux?

» Note: multi-dimensions handled by operating splitting

grid: :xEulerSweep.C, grid::yEulerSweep.C,
grid::zEulerSweep.C

J

Grid::SolvePPM_ DE

// ' Update in x-direction
for (k = 0; k < GridDimension[2]; k++) {
if (this->xEulerSweep(k, NumberOfSubgrids, SubgridFluxes,
GridGlobalStart, CellWidthTemp, GravityOn,
NumberOfColours, colnum) == FAIL) {
fprintf(stderr, "Error in xEulerSweep. k = %d\n", k);
ENZO_FAIL(");

}
} // ENDFOR k

// ' Update in y-direction
for (i = 0;i < GridDimension[0]; i++) {
if (this->yEulerSweep(i, NumberOfSubgrids, SubgridFluxes,
GridGlobalStart, CellWidthTemp, GravityOn,
NumberOfColours, colnum) == FAIL) {
fprintf(stderr, "Error in yEulerSweep. i = %d\n", i);
ENZO_FAIL(");

}
} // ENDFOR i

PPM: 1D hydro update: grid: :xEulerSweep
Copy 2D slice out of cube

Compute pressure on slice (pgas2d)

Calculate diffusion/steepening coefficients (calcdiss)
Compute Left and Right states on each cell edge (inteuler)
Solve Reimann problem at each cell edge (twoshock)

Compute fluxes of conserved quantities at each cell edge
(euler)

Save fluxes for future use

Return slice to cube

PPM: reconstruction: i1nteuler

Piecewise parabolic representation:

qj(x) =qr,; + T(Ag; + ¢s,5(1 — I)),

qL T — T 1
..... ~_ Lg—1/2 . . .
\\ b . l“j—l/Q S €I S l‘j—l—l/?'

k:
& qr AIj

Coefficients (Aq and q,) computed with mean q and q,, gx.

For smooth flow (like shown above), this is fine, but can cause a
problem for discontinuities (e.g. shocks)

d,, gr are modified to ensure monotonicity (no new extrema)

PIM: reconstruction
AN

FiG. 1. Spatkal distriburion of q af initial time 1*

® Piecewise linear method

® More diffusive reconstruction scheme, but
more stable.

PPM: Godunov method: twoshock

To compute flux at cell boundary, take two initial constant
states and then solve Riemann problem at interface

rarefaction wave

\ contact discontinuity
- shock

left state right state

Given solution, can compute flux across boundary

Advantage: correctly satisfies jump conditions for shock

PPM: Godunov method: inteuler, twoshock

» For PPM, compute left and right states by averaging over
characteristic region (causal region for time step At)

t

n n
@ at C ot €y

» Average left and right regions become constant regions to
be feed into Riemann solver (twoshock).

PPM: Eulerian corrections: euler

» Eulerian case more complicated because cell edge is fixed.

Characteristic region for fixed cell more complicated:

SUBSONIC CASE SUPERSONIC CASE

Note that solution is not known ahead of time so two-step
procedure is used (see Collela & Woodward 1984 for details)

Other Riemann solvers
® HLL: (Harten-Lax-Leer)

‘(
/’+ Uhll\

Fig. 10.3. Approximate HLL Riemann solver. Solution in the Star Region consists
of a single state U separated from data states by two waves of speeds S; and Sg

e HLLC: HLL but considering the contact
wave

Fig. 10.4. HLLC approximate Riemann solver. Solution in the Star Region consists
of two constant states separated from each other by a middle wave of speed S.

Difficulty with very high Mach flows

» PPM is flux conservative so natural variables are mass,
momentum, total energy

» Internal energy (e) computed from total energy (E):
1

e=F — —v?

2
» Problem can arise in very high Mach flows when E >> e

e is difference between two large numbers

» Not important for flow dynamics since p is negligible

But can cause problems if we want accurate temperatures
since T ae

Dual Energy Formalism:

grid: :ComputePresureDualEnergyFormalism

» Solution: Also evolve equation for internal energy:
de 1

2
— + —v-Ve= —V_-
a o C ap v

» Select energy to use depending on ratio e/E:

p= {p(ﬁ/ —DE=v*/2), (BE=v"/2)/E >
p('\/—l)eg (E—V2/2>/E<7)1.

» Select with DualEnergyFormalism = 1
» Use when v/c, > ~20
» Q:Why not just use e?
A: Equation for e is not in conservative form (source term).

Source term in internal energy equation causes diffusion

Zeus Solver: grid: :ZeusSolver

» Traditional finite difference method

Artificial viscosity (see Stone & Norman 1992)
» HydroMethod = 2

» Source step: ZeusSource

n __ . n
Pressure (and gravity) update: ,n+a _ ,n At Py —Pj-1

= V. —
’ T Axy (pf +p7-1)/2
ofe o . e, At qn—{—a o qnj—a
Artificial viscosity: St nta J j—1
/ / Azj (pf +p}y)/2

) Qavpj(vjpr —v)? if(vig —vy) <0
1 0 otherwise

Compression heating: ente = e;wb G — Ei%g;ﬁ _ ng ' V;j)
+ t Y "V)j

Zeus Solver: grid: :ZeusSolver

» Transport step: Zeus_xTransport

At
+d __ - * +
e.g. /);l P] Al(;l+1c/2/?]+1/2 ;l 1C/2/)] 1/2)

Note conservative form (transport part preserves mass)

Note v, is face-centered so is really at cell-edge, but density
needs to be interpolated. Zeus uses an upwinded van Leer

(linear) interpolation:

qj(v)=qr.j + 1(Ag,

Similarly for momentum and energy (and y and z)
Zeus_yTransport, Zeus_zTransport

Zeus Solver: grid: :ZeusSolver

» PPM is more accurate, slower but Zeus is faster and more
robust.

PPM often fails (“dnu < 0” error) when fast cooling generates
large density gradients.

Try out new hydro solvers in Enzo 2.0!

» Implementation differences with PPM:
Internal energy equation only
In code, TotalEnergy field is really internal energy (ugh!)

Velocities are face-centered
BaryonField[VellNum] [GINDEX(i,j,k)] really “lives” at i-1/2

II. Block Structured AMR

AMR: EvolveHierarchy

» Root grid NxNxN, so Ax = DomainWidth/N
» Level L defined so Ax = DomainWidth/(N2"})
» Starting with level 0, grid advanced by At

Main loop of EvolveHierarchy looks (roughly) like this:

InitializeHierarchy
While (Time < StopTime)
begin
dt = ComputeTimeStep(0)
EvolveLevel (0, dt)
Time = Time + dt
CheckForOutput (Time)
end

EvolvelLevel does the heavy lifting

Time Step: grid: :ComputeTimeStep

» Timestep on level L is minimum of constraints over all
level L grids:

, alx
Ath,yd.m = min (K/hydro—/) Khydro CourantSafetyFactor
Cs T+ ’U:z?| L
- aAx < ParticleCourantSafetyFactor
At gy = min | Kam . Rdm y
Vdm,x / 1,
a f))

, Az
Al gecer = min < —
(g
g L

» + others (e.g. MHD, FLD, etc.)

AMR: EvolvelLevel

» Levels advanced as follows:

timesteps order of steps
dt |
level 0 , . .
dt/2 dt/2 | \
level 1 | . -
di/d | di/4 | di/a | di/a | \ f \
level 2 | | 1 PR s ®
fime ——

Timesteps may not be integer ratios

(Diagram assumes Courant condition dominates and sound speed is
constant so: dt o Ax)

This algorithm is defined in Evolvelevel

Advance grids on level: Evolvelevel

» The logic of Evolvelevel is given (roughly) as:

EvolveLevel (level)
begin
SetBoundaryValues
while (Time < ParentTime)
begin
dt = ComputeTimeStep(level) :
SolveHydroEquations(dt) :}-‘Aheadytdkedaboutthm.
Time = Time + dt
SetBoundaryValues
recursive ——» EvolveLevel (level+1, dt)
FluxCorrection " Next, we'll talk about these
Projection
RebuildHierarchy(level+1l)
end
end

—

BC’s: SetBoundaryConditions

» Setting “ghost” zones around outside of domain
grid: :SetExternalBoundaryValues

Choices: reflecting, outflow, inflow, periodic
Only applied to level 0 grids (except periodic)

» Otherwise, two step procedure:
Interpolate ghost (boundary) zones from level L-1 grid

grid: :InterpolateBoundaryFromParent
Linear interpolation in time (OLdBaryonFields)

Spatial interpolation controlled by InterpolationMethod
SecondOrderA recommended, default (3D, linear in space, monotonic)

Copy ghost zones from sibling grids
grid: :CheckForOverlap and grid: :CopyZonesFromGrid

Projection: grid: :ProjectSolutionToParentGrid

» Structured AMR produces redundancy:

coarse and fine grids cover same region
» Need to restore consistency
» Correct coarse cells once grids have all reach the same
time:

coarse __ _.—d fine
e = 1N FE

.5,k
Z—F—T— T
/ ,""’ i 1 1 \ \
,"/ L \

Flux Correction:
grid: :CorrectForRefinedFluxes

» Mismatch of fluxes occurs around boundary of fine grids

Coarse cell just outside boundary used coarse fluxes but
coarse cell inside used fine fluxes

» Both fine and coarse fluxes saved

from hydro solver

7

7

e

/ /
/
. \
qcoarse — qcoarse Af (Fcoarse L ZFf”w) / l \
A ;
Uncorrected I

coarse value
Coarse flux Sum of fine fluxes

across boundary Over 4 (in 3D)
abutting fine cells

Rebuilding the Hierarchy:
RebuildHierarchy

» Need to check for cells needing more refinement

level 0
level 1

level 2

Check for new grids on
timesteps level | (and below)

=] / Check for new grids on

a2 </*’"’/|/ Level 2 (and below)

di/4 . di/4 I dt/4 . di/4

' | .
time —— \ Check for new grids on

Level 3 (and below)

Refinement Criteria — grid::SetFlaggingField

» Many ways to flag cells for refinement
CellFlaggingMethod =

refine by slope

refine by baryon mass

refine by shocks

refine by particle mass

refine by Jeans length

7 - refine if cooling time < cell width/sound speed
11 - refine by resistive length

12 - refine by defined region "MustRefineRegion"

13 - refine by metallicity

» Then rectangular grids must be chosen to cover all
flagged cells with minimum “waste”

D WN
| I O B B |

Done with machine vision technique
Looks for edges (inflection points in number of flagged cells)

ProtoSubgrid class

I[II. Gravity

Self—Gravity (Selmevity = 1)

» Solve Poisson equation

» PrepareDensityField
BaryonField[Density] copied to GravitatingMassField
Particle mass is deposited in 8 nearest cells (CIC)

Particle position advanced by ' step

DepositParticleMassField

» Root grid (level 0): . .

Potential solved with FFT SR
o(k) = G(k)p(k). o

ComputePotentialFieldLevelZero e E °

Potential differenced to get acceleration

grid: :ComputeAccelerationField

Self-Gravity
» Subgrids:

Potential interpolated to boundary from parent
Grid: :PreparePotentialField

Each subgrid then solves Poisson equation using multigrid
Grid: :SolveForPotential

Note: this has two issues:

Interpolation errors on boundary can propagate to fine levels
Generally only an issue for steep potentials (point mass)
Ameliorated by having 6 ghost zones for gravity grid

Subgrids can have inconsistent potential gradients across boundary

Improved by copying new boundary conditions from sibilings and resolving
the Poisson equation (PotentialIterations = 4 by default)

More accurate methods in development

Other Gravitational sources —
grid::ComputeAccelerationFieldExternal

» Can also add fixed potential:
UniformGravity — constant field
PointSourceGravity — single point source
ExternalGravity — NFWV profile

IV. Particles

N-body dynamics

» Particles contribute mass to GravitatingMassField

» Particles accelerated by AccelerationField
Interpolated from grid (from 8 nearest cells)
» Particles advanced using leapfrog
g H/2 — gy (At/2)v"
" =™ & Ata" /2
g =2 L (At/2)0"
grid: :ComputeAccelerations

» Particles stored in the locally most-refined grid
ParticlePosition, ParticleVelocity, ParticleMass

» Tracer particles (massless) also available

