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Outline

• We will consider additional physics in Thursday’s AMR (no nested grids) 
cosmology simulation.

• Refresher on the hydro + N-body run performed on Thursday with an adiabatic 
equation of state.

• Adding radiative cooling and a ultraviolet background

• Adding star formation and feedback (only supernovae)

• Adding radiative feedback from stars
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Hydrodynamics with an Adiabatic Equation of State

• On Thursday, everyone ran a 323 AMR simulation with hydrodynamics and N-
body dynamics.

• Go to the run directory.  For example

• cd ~/sapporo_cosmo/sapporo_cosmo_nbody

• Let’s analyze it.

• Projections

• Phase plots in density and temperature
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Hydrodynamics with an Adiabatic Equation of State

• source ~/yt-x86_64/bin/activate

• We will be using the yt script, anyl.py
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Hydrodynamics with an Adiabatic Equation of State

• Run the yt script for the last dataset.  For example,

• python ../anyl.py DD0049/DD0049

• Creates the projections and phase plots and places them in pics/

• Note: I have written the script so that if no argument is given, all datasets are 
analyzed.

• python ../anyl.py
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Radiative Cooling and Ultraviolet Background

• Now we can add more physics to the adiabatic simulation.

• Add radiative cooling and non-equilibrium chemistry.

• Add optically-thin ultraviolet background
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~guest009/cooling/cooling.enzo
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Different Ultraviolet Backgrounds
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Different Ultraviolet Backgrounds
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Ultraviolet Background (Haardt & Madau 2012)
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QSO only
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series lines
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Ultraviolet Background (Haardt & Madau 2012)
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Radiative Cooling and Ultraviolet Background

• This simulation takes 50 minutes to run on my laptop with 2 cores.

• Requires the tabulated UV background in the run directory.

• ~/enzo-stable/input/hm12_photorates.dat

• If you want to run the simulation later, you can copy the parameter file and 
initial conditions files from the adiabatic simulation

cd ~/sapporo_cosmo
mkdir cooling
cp sapporo_cosmo_nbody/Grid* sapporo_cosmo_nbody/Particle* cooling
cd cooling
cp ~guest009/cooling.enzo .
cp <where enzo is>/enzo.exe .
./enzo.exe -d cooling.enzo
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Radiative Cooling and Ultraviolet Background

• I have copied the last output to conival.  You can copy it to your directory

• cp -r ~guest009/cooling/DD0050 .

• Let’s inspect it!
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Radiative Cooling and Ultraviolet Background

• I have also uploaded a IPython notebook to my directory.

• cp ~guest009/cooling/Cooling.ipynb .
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+ Star Formation and Supernova Feedback

• Let’s add more physics!  Star formation and supernova feedback.

• Star Formation (original formulation: Cen & Ostriker 1992)

• Overdense: 

• Converging flow:

• Cooling:

• Gravitational unstable (originally used, but not in the specific algorithm we’ll 
be using):
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+ Star Formation and Supernova Feedback

• Supernova feedback is modeled with thermal energy injection
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+ Star Formation and Supernova Feedback

• You can find the parameter file in

• sapporo_cosmo/stars-uvb.enzo

• Star formation and feedback. 

• Method 5 → 25 = 32
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+ Star Formation and Supernova Feedback
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+ Star Formation and Supernova Feedback

• Star formation and feedback. 
Method 5 → 25 = 32

• Method 3 (Population III stars) and 
method 5 use the same minimum 
overdensity.  Negative number 
means units in cm-3.  Positive 
number is in code units.

• Critical metallicity to transition 
from Population III to Population II.  
For this simulation, we only want to 
consider Pop II stars, so we set to 
a tiny_number.
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+ Star Formation and Supernova Feedback

• Use metal feedback in supernova.

• Use Cen & Ostriker prescription for 
time-dependent feedback.

• Dynamical time (→ avg. density) of 
a sphere that accretes onto the 
star particle.

• Ionizing photon luminosity (in units 
of photons / s / M⊙)

• Supernova thermal energy (in units 
of erg / M⊙)

• Radius of sphere where the energy 
is injected (in units of pc)
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+ Star Formation and Supernova Feedback

• Mass fraction of cold gas inside 
the sphere that is deposited into 
the star particles.

• Minimum mass (in units of M⊙) of 
star particles
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+ Star Formation and Supernova Feedback

• Again, this simulation takes some time to complete.  About an hour.

• I have uploaded the last output at redshift 3 and IPython notebook to

• ~guest009/SNe/DD0050

• ~guest009/SNe/Supernovae.ipynb

• Let’s inspect it!
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+ Radiative Feedback

• Enzo has two prescriptions to solve the radiative transfer equation:

• Adaptive ray tracing

• Flux limited diffusion

• This allows for an inhomogenous radiation field with spatially dependent 
absorption and emission coefficients.

• Can be used in conjunction with a radiation background.
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Cosmological Radiative Transfer Equation
n := normal vector
a := scale factor
ā := a/aem
H := Hubble factor
ν := frequency

I⌫ ⌘ I(⌫,x,⌦, t)
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Simplifications – “Local” Approximation
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2. Ignore cosmological redshift and dilution (may 

become important >50 Mpc)
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RT Equation along a Ray

• Consider point sources of radiation

• Initially, the radiation flux is split equally among all rays.
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• P := photon flux in the ray
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Adaptive Ray Tracing (Enzo+Moray) Abel & Wandelt (2002)
Wise & Abel (2011)

• Ray directions and splitting based 
on HEALPix (Gorski et al. 2005)

• Coupled with (magneto-) 
hydrodynamics of Enzo

• Rays are split into 4 child rays 
when the solid angle is large 
compared to the cell face area

• Well-suited for AMR

• Can calculate the photo-ionization 
rates so that the method is photon 
conserving.

• MPI/OpenMP hybrid parallelized.
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Adaptive Ray Tracing (Enzo+Moray) Abel & Wandelt (2002)
Wise & Abel (2011)

• H + He ionization (heating)

• X-rays (secondary ionizations)

• Lyman-Werner transfer (based on 
Draine & Bertoldi shielding function)

• Choice between energy discretization 
and general spectral shapes (column 
density lookup tables, see C2-Ray)

• See Mirocha+ (2012) for optimized 
choices for energy bins.

• Radiation pressure from continuum

• Choice between c = Ac, ∞

• Can delete a ray when its flux drops 
below some fraction of the UVB for 
local UV feedback.

Saturday, 19 October 13



OVERCOMING O(NSTAR) :: RAY / SOURCE MERGING

• Sources are grouped on a binary 
tree.

• On each leaf, a “super-source” is 
created that has the center of 
luminosity.

• After the ray travel ~3-5 times the 
source separation, the rays 
merge.

• Recursive.

• Have run simulations with 25k 
point sources.

Okamoto et al. (2011)
Wise & Abel (in prep)
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+ Radiative Feedback

• Radiative transfer ON

• Minimum rays per cell (angular 
resolution)

• Hydrogen photo-ionization only

• Radiation periodic boundary

• Ray merging ON

• Ray merging radius (in units of 
separation of source pairs)
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+ Radiative Transfer

• This simulation only runs to z = 7, so we can run this simulation.

cd ~/sapporo_cosmo
mkdir RT
cp stars-rt.enzo RT
cp sapporo_cosmo_nbody/Grid* sapporo_cosmo_nbody/Particle* RT
cp ~/enzo-stable/input/hm12_photorates.dat RT
cd RT
cp ~/enzo-stable/src/enzo/enzo.exe .
./enzo.exe -d stars-rt.enzo
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Summary

• Today we have covered some advanced topics in cosmology simulations.

• Usually when doing research, it is best to introduce physics progressively to 
understand the effect of each physical process.

• We have compared the same cosmological volume with the following physics.

• Adiabatic equation of state

• + Radiative cooling (H, He) and an ultraviolet radiation background

• + Star formation and supernova feedback

• + Stellar radiative feedback, using adaptive ray tracing
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