Advanced Cosmological
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Outline

+ We will consider additional physics in Thursday's AMR (no nested grids)
cosmology simulation.

» Refresher on the hydro + N-body run performed on Thursday with an adiabatic
equation of state.

+ Adding radiative cooling and a ultraviolet background
+ Adding star formation and feedback (only supernovae)

+ Adding radiative feedback from stars
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Hydrodynamics with an Adiabatic Equation of State

» On Thursday, everyone ran a 323 AMR simulation with hydrodynamics and N-
body dynamics.

» GO0 to the run directory. For example

* cd ~/sapporo_cosmo/sapporo_cosmo_nbody
+ Let's analyze it.
» Projections

» Phase plots in density and temperature
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Hydrodynamics with an Adiabatic Equation of State

e source ~/yt-x86_64/bin/activate

* We will be using the yt script, anyl. py

ts = TimeSeriesData.from_filenames(fname)
for pf in ts.piter():
test_pic_name = "pics/%s_Projection_x_%s_Density.png" ¥ (pf, fields[0])
if os.path.exists(test_pic_name): continue
for dim in 'xyz':
p = ProjectionPlot(pf, dim, fields, weight_field="Density", center=[0.5]%*3)
for f in fields:
if f in zlim.keys():
p.set_zlim(f, zlim[f][0], zlim[f][1D)
if f in cmap.keys():
p.set_cmap(f, cmap[f])
p.annotate_text((1.1, 1.08), 'z = %.2f' % pf.current_redshift,
text_args={'ha': 'right', 'va': "top'})
p.save("pics/¥%s" % pf)
del p
pc = PlotCollection(pf)
ad = pf.h.all_data()
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Hydrodynamics with an Adiabatic Equation of State

e source ~/yt-x86_64/bin/activate

ts = TimeSeriesData.from_filenames(fname)
for pf in ts.piter():

test_pic_name = "pics/%¥s_Projection_x_%s_Density.png" ¥ (pf, fields[@])
if os.path.exists(test_pic_name): continue
for dim in 'xyz':

p = ProjectionPlot(pf, dim, fields, weight_field="Density", center=[0.5]%*3)

for f in fields:

if f in zlim.keys():
p.set_zlim(f, zlim[f][0], zlim[f][1])
if f in cmap.keys():
p.set_cmap(f, cmap[f])
p.annotate_text((1.1, 1.08), 'z = %.2f' % pf.current_redshift,
text_args={'ha': 'right', 'va': 'top'})

p.save("pics/¥%s" % pf)

del p
pc = PlotCollection(pf)
ad = pf.h.all_data()
pc.add_phase_object(ad, ['Density', 'Temperature', 'CellMassMsun'], weight=None)
pc.save('pics/%s" % pf)
del pc
pf.h.clear_all_data()
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Hydrodynamics with an Adiabatic Equation of State

* Run the yt script for the last dataset. For example,
* python ../anyl.py DD0049/DD0049

* Creates the projections and phase plots and places them in pics/

 Note: | have written the script so that if no argument is given, all datasets are
analyzed.

* python ../anyl.py
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Radiative Cooling and Ultraviolet Background

+ Now we can add more physics to the adiabatic simulation.

~guest009/cooling/cooling.enzo
- Add radiative cooling and non-equilibrium chemistry.

RadiativeCooling

MultiSpecies

- Add optically-thin ultraviolet background

#

background parameters
#
RadiationFieldType

RadiationRedshiftOn

RadiationRedshiftOff -
RadiationRedshiftFullOn RadiationFieldRedshift

Cosmology Simulations Non-cosmology Simulations

7
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Different Ultraviolet Backgrounds

Radiation Parameters

Background Radiation Parameters

RadiationFieldType (external)

This integer parameter specifies the type of radiation field that is to be used. Except for
RadiationFieldType = 9, which should be used with Multispecies = 2, UV backgrounds

can currently only be used with Multispecies = 1 (i.e. no molecular H support). The
following values are used. Default: 0

10
11
12
15

Haardt & Madau spectrum with g alpha = 1.5

Haardt & Madau spectrum with g alpha = 1.8

Modified Haardt & Madau spectrum to match observations

(Kirkman & Tytler 2005).

Haardt & Madau spectrum with g alpha = 1.5 supplemented with an X-ray Compton heating
background from Madau & Efstathiou (see astro-ph/9902080)

Constant molecular H2 photo-dissociation rate

Internally computed radiation field using the algorithm of Cen & Ostriker

Same as previous, but with very, very simple optical shielding fudge

Haardt & Madau spectrum with g alpha = 1.57

Haardt & Madau 2012. See Table 3 in '2012ApJ...746..125H <http://adsabs.harvard.edu/abs/20]
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This integer parameter specifies the type of radiation field that is to be used. Except for
RadiationFieldType = 9, which should be used with MultiSpecies = 2, uv backgrounds

can currently only be used with Multispecies = 1 (i.e. no molecular H support). The
following values are used. Default: O

1 -~ Haardt & Madau spectrum with g alpha = 1.5
2 - Haardt & Madau spectrum with g alpha = 1.8
3 - Modified Haardt & Madau spectrum to match observations

(Kirkman & Tytler 2005).

4 -~ Haardt & Madau spectrum with g alpha = 1.5 supplemented with an X-ray Compton heating
background from Madau & Efstathiou (see astro-ph/9902080)

9 - Constant molecular H2 photo-dissociation rate

10 - Internally computed radiation field using the algorithm of Cen & Ostriker

11 - Same as previous, but with very, very simple optical shielding fudge

12 - Haardt & Madau spectrum with g alpha = 1.57

15 - Haardt & Madau 2012. See Table 3 in '2012ApJ...746..125H <http://adsabs.harvard.edu/abs/20]
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Ultraviolet Background (Haardt & Madau 2012)

QSO only
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Ultraviolet Background (Haardt & Madau 2012)
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Radiative Cooling and Ultraviolet Background

» This simulation takes 50 minutes to run on my laptop with 2 cores.

» Requires the tabulated UV background in the run directory:.

* ~/enzo-stable/input/hm12_photorates.dat

» |f you want to run the simulation later, you can copy the parameter file and
initial conditions files from the adiabatic simulation

cd ~/sapporo_cosmo

mkdir cooling
Cp sapporo_cosmo_nbody/Grid* sapporo_cosmo_nbody/Particle* cooling

cd cooling

cp ~guest009/cooling.enzo .
cp <where enzo is>/enzo.exe .
./enzo.exe -d cooling.enzo

11
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Radiative Cooling and Ultraviolet Background

- | have copled the last output to conival. You can copy It to your directory

*Cp -r ~guest009/cooling/DD0050 .

» Let's Inspect It!

12
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Radiative Cooling and Ultraviolet Background

» | have also uploaded a IPython notebook to my directory.

* cp ~guest009/cooling/Cooling.1ipynb .

19
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+ Star Formation and Supernova Feedback

+ Let's add more physics! Star formation and supernova feedback.

+ Star Formation (original formulation: Cen & Ostriker 1992)

- Overdense: P > PSF ~. / /
- Converging flow: V - v < () ™ —
» Cooling: teool < tdyn — / \

+ Gravitational unstable (originally used, but not in the specific algorithm we'll
be using): M.on > M
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+ Star Formation and Supernova Feedback

+ Supernova feedback is modeled with thermal energy injection

21
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+ Star Formation and Supernova Feedback

+ Supernova feedback is modeled with thermal energy injection
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+ Star Formation and Supernova Feedback

* You can find the parameter file In

* sapporo_cosmo/stars-uvb.enzo

- Star formation and feedback.

« Method 5 = 2°=32

StarParticleCreation
StarParticleFeedback

PopIIIQverDensityThreshold
PopIIIMetalCriticalFraction

StarClusterUseMetalField
StarClusterUnresolvedModel
StarClusterMinDynamicalTime
StarClusterIonizinglLuminosity
StarClusterSNEnergy
StarClusterSNRadius
StarClusterFormEfficiency
StarClusterMinimumMass

22
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+ Star Formation and Supernova Feedback

StarParticleCreation (external)

This parameter is bitwise so that multiple types of star formation routines can be used in a
single simulation. For example if methods 1 and 3 are desired, the user would specify 10 (21
+ 23), or if methods 1, 4 and 7 are wanted, this would be 146 (21 + 2% + 27). Default: 0

- Cen & Ostriker (1992)

- Cen & Ostriker (1992) with stocastic star formation
Global Schmidt Law / Kravstov et al. (2003)

- Population III stars / Abel, Wise & Bryan (2007)

B W N = O
I

- Sink particles: Pure sink particle or star particle with wind feedback depending on
choice for HydroMethod / Wang et al. (2009)

- Radiative star clusters / Wise & Cen (2009)

- [reserved for future use]

Cen & Ostriker (1992) with no delay in formation

- Springel & Hernquist (2003)

O 0 ~ o WU
|

- Massive Black Hole (MBH) particles insertion by hand / Kim et al. (2010)
10 - Population III stellar tracers

11 - Molecular hydrogen regulated star formation

23
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+ Star Formation and Supernova Feedback

- Star formation and feedback.

Method 5 = 2°=32

+ Method 3 (Population Ill stars) and
method 5 use the same minimu
overdensity. Negative number
means units in cm=. Positive
number Is In code units.

» Critical metallicity to transition
from Population Il to Population II.
For this simulation, we only want to
consider Pop Il stars, so we set to
a tiny_number.

StarParticleCreation
StarParticleFeedback

PopIIIOverDensityThreshold
PopIIIMetalCriticalFraction

StarClusterUseMetalField
StarClusterUnresolvedModel
StarClusterMinDynamicalTime
StarClusterIonizinglLuminosity
StarClusterSNEnergy
StarClusterSNRadius
StarClusterFormEfficiency
StarClusterMinimumMass

24
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+ Star Formation and Supernova Feedback

+ Use metal feedback in supernova.

+ Use Cen & Ostriker prescription for
time-dependent feedback.

* Dynamical time (= avg. density) of
a sphere that accretes onto the
star particle.

» lonizing photon luminosity (in units
of photons / s / Mo)

» Supernova thermal energy (in units
of erg / Mo)

+ Radius of sphere where the energy
IS injected (in units of pc)

StarParticleCreation
StarParticleFeedback

PopIIIOverDensityThreshold
PopIIIMetalCriticalFraction

StarClusterUseMetalField
StarClusterUnresolvedModel
StarClusterMinDynamicalTime
StarClusterIonizinglLuminosity
StarClusterSNEnergy
StarClusterSNRadius
StarClusterFormEfficiency
StarClusterMinimumMass

25
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+ Star Formation and Supernova Feedback

+ Mass fraction of cold gas inside
the sphere that Is deposited into
the star particles.

StarParticleCreation
StarParticleFeedback

PopIIIOverDensityThreshold
PopIIIMetalCriticalFraction

+ Minimum mass (in units of Me) of

star particles StarClusterUseMetalField

StarClusterUnresolvedModel
StarClusterMinDynamicalTime
StarClusterIonizinglLuminosity
StarClusterSNEnergy
StarClusterSNRadius
StarClusterFormEfficiency
StarClusterMinimumMass

26
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+ Star Formation and Supernova Feedback

» Again, this simulation takes some time to complete. About an hour.

» | have uploaded the last output at redshift 3 and IPython notebook to
* ~guest009/SNe/DD0O050

» ~guest009/SNe/Supernovae.1ipynb

» Let's Inspect It!

27
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+ Radiative Feedback

» Enzo has two prescriptions to solve the radiative transfer equation:
» Adaptive ray tracing
» Flux limited diffusion

» This allows for an inhomogenous radiation field with spatially dependent
absorption and emission coefficients.

» Can be used Iin conjunction with a radiation background.

33
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+ Radiative Feedback

» Enzo has two prescriptions to solve the radiative transfer equation:

- Adaptive ray tracing <

- Flux limited diffusion

absorption and emission coefficients.

~

N

\
N

\

—p
\

N\

\
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» Can be used Iin conjunction with a radiation background.

\\

» This allows for an inhomogenous radiation field with spatially dependent

33
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Cosmological Radiative Transfer Equation

n := normal vector
a .= scale factor
= a/Aem

H := Hubble factor
VvV .= frequency

QI

I, =1v,x,Q,t)

R

— _/{VIV + ju

1 5 .
ol, n-VI, H < ol, 3];/)
v
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Cosmological Radiative Transfer Equation

n := normal vector
a .= scale factor
= a/Aem

H := Hubble factor
VvV .= frequency

QI

I, =1v,x,Q,t)

c Ot a C Ov
A Q
Q, % % s % <
O&/)).ro? é//;( /))O/ @ %/.
? &, //ZQ X O/ 629 .
&% S ,O V/
T, 7 70, . O
D5, F %, 0. 7
% 9 7
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Simplifications — “Local” Approximation

1. Short timesteps (& = 1)
2. lgnore cosmological redshift and dilution (may
become important >50 Mpc)

1 aL/ ’ﬁ/ ) VIV H aIV
c Ot a C ( ov > T
Q
%% %, b Y S
% s, 2 2 O Sy .
N (% 0 75 6}
Y. Y0, Ox. 0O
D, %, 0. 7
% % 7)
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Simplifications — “Local” Approximation

1. Short timesteps (& = 1)
2. lgnore cosmological redshift and dilution (may
become important >50 Mpc)

1 aL/ ’ﬁ/ ) VIV H aIV
c Ot C ( ov > T
Q
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Simplifications — “Local” Approximation

1. Short timesteps (& = 1)
2. lgnore cosmological redshift and dilution (may
become important >50 Mpc)

¢ ot = et
% % &
Q. S o7 S ’Vé
e %//;. o S /))/
%/é (%Q& ) /OO C@' O & .
& % Gy .
T, 7 70, . O
%, F 2, 0. 72
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R T Equation along a Ray

e Consider point sources of radiation

e |nitially, the radiation flux is split equally among all rays.

LoP OP

c Ot

e P .= photon flux in the ray

or

— —krP

A S

N
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Adaptive Ray Tracing (Enzo+Moray) Abel & Wandelt (2002)

Wise & Abel (2011)

e Ray directions and splitting based
on HEALPIx (Gorski et al. 2005) N \ \
e Coupled with (magneto-) \ \ \}\ \

hydrodynamics of Enzo

e Rays are split into 4 child rays
when the solid angle is large
compared to the cell face area

e \Well-suited for AMR

e Can calculate the photo-ionization 25
rates so that the method is photon
conserving.

e MPI/OpenMP hybrid parallelized.

Saturday, 19 October 13



Adaptive Ray Tracing (Enzo+Moray) Abel & Wandelt (2002)

Wise & Abel (2011)

e H + He ionization (heating)

e X-rays (secondary ionizations) N \ \

e | yman-Werner transfer (based on \ \ \}\ \
Draine & Bertoldi shielding function)

e Choice between energy discretization
and general spectral shapes (column
density lookup tables, see C>-Ray)

e See Mirocha+ (2012) for optimized
choices for energy bins.

e Radiation pressure from continuum LN

e Choice between c = Ac, «

e Can delete a ray when its flux drops
below some fraction of the UVB for
local UV feedback.
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Qv

RCOMING O(Nsmar) :: RAY / SOURCE MERGING

Okamoto et al. (2011)
Wise & Abel (in prep)

® 5Sources are grouped on a binary
tree.

® On each leaf, a “super-source” is

created that has the center of W .
luminosity. FUR SR w

® After the ray travel ~3-5 times the Ll N
source separation, the rays * %
merge. W R

e Recursive. Ko

® Have run simulations with 25k
point sources.
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Qv

RCOMING O(Nsmar) :: RAY / SOURCE MERGING

Okamoto et al. (2011)
Wise & Abel (in prep)

® 5Sources are grouped on a binary
tree.

® On each leaf, a “super-source” is

created that has the center of W .
luminosity. JUIR TR VO w

® After the ray travel ~3-5 times the jaflal R
source separation, the rays ® | ®
merge. w R
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® Have run simulations with 25k
point sources.
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Qv

RCOMING O(Nsmar) :: RAY / SOURCE MERGING

Okamoto et al. (2011)
Wise & Abel (in prep)

® 5Sources are grouped on a binary
tree.

® On each leaf, a “super-source” is
created that has the center of
luminosity. 2

® After the ray travel ~3-5 times the
source separation, the rays
merge.

® Recursive.

® Have run simulations with 25k
point sources.
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Qv

RCOMING O(Nsmar) :: RAY / SOURCE MERGING
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created that has the center of
luminosity.

® After the ray travel ~3-5 times the
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+ Radiative Feedback

+ Radiative transfer ON sapporo_cosmo/stars-rt.enzo

o formation and feedback parameters
+ Minimum rays per cell (angular #

resolution) \\\\\\*RadiativeTransfer =1
RadiativeTransferRaysPerCell

o RadiativeTransferFluxBackgroundLimit

* Hydrogen photo-ionization only RadiativeTransferInitialHEALPixLevel
RadiativeTransferHydrogenOnly

o o RadiativeTransferOpticallyThinH2

* Radiation periodic boundary — RadiativeTransferPeriodicBoundary

RadiativeTransferAdaptiveTimestep

B RadiativeTransferSourceClustering

RadiativeTransferPhotonMergeRadius

S I
H§

+ Ray merging ON —

WRRPRRORLRRLPOW

S

 Ray merging radius (in units of
separation of source pairs)

40
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+ Radiative Transfer

» This simulation only runs to z = 7, so we can run this simulation.

cd ~/sapporo_cosmo

mkdir RT

cp stars-rt.enzo RT

Cp sapporo_cosmo_nbody/Grid* sapporo_cosmo_nbody/Particle* RT
Cp ~/enzo-stable/input/hm12_photorates.dat RT

cd RT

Cp ~/enzo-stable/src/enzo/enzo.exe .

./enzo.exe -d stars-rt.enzo
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Summary

» Today we have covered some advanced topics in cosmology simulations.

» Usually when doing research, it Is best to introduce physics progressively to
understand the effect of each physical process.

+ We have compared the same cosmological volume with the following physics.

Adiabatic equation of state

+ Radiative cooling (H, He) and an ultraviolet radiation background

+ Star formation and supernova feedback

+ Stellar radiative feedback, using adaptive ray tracing
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