

Advanced Cosmological Simulations

John Wise (Georgia Tech) Enzo Workshop 北海道大学 – 19 Oct 2013

Outline

- We will consider additional physics in Thursday's AMR (no nested grids) cosmology simulation.
- Refresher on the hydro + N-body run performed on Thursday with an adiabatic equation of state.
- Adding radiative cooling and a ultraviolet background
- Adding star formation and feedback (only supernovae)
- Adding radiative feedback from stars

- On Thursday, everyone ran a 32³ AMR simulation with hydrodynamics and Nbody dynamics.
- Go to the run directory. For example
 - cd ~/sapporo_cosmo/sapporo_cosmo_nbody
- Let's analyze it.
 - Projections
 - Phase plots in density and temperature

- source ~/yt-x86_64/bin/activate
- We will be using the yt script, anyl.py

```
ts = TimeSeriesData.from_filenames(fname)
for pf in ts.piter():
    test_pic_name = "pics/%s_Projection_x_%s_Density.png" % (pf, fields[0])
    if os.path.exists(test_pic_name): continue
    for dim in 'xyz':
        p = ProjectionPlot(pf, dim, fields, weight_field="Density", center=[0.5]*3)
        for f in fields:
            if f in zlim.keys():
                p.set_zlim(f, zlim[f][0], zlim[f][1])
            if f in cmap.keys():
                p.set_cmap(f, cmap[f])
        p.annotate_text((1.1, 1.08), 'z = %.2f' % pf.current_redshift,
                        text_args={'ha': 'right', 'va': 'top'})
        p.save("pics/%s" % pf)
        del p
    pc = PlotCollection(pf)
    ad = pf.h.all_data()
```

• source ~/yt-x86_64/bin/activate

```
ts = TimeSeriesData.from_filenames(fname)
for pf in ts.piter():
    test_pic_name = "pics/%s_Projection_x_%s_Density.png" % (pf, fields[0])
    if os.path.exists(test_pic_name): continue
    for dim in 'xyz':
        p = ProjectionPlot(pf, dim, fields, weight_field="Density", center=[0.5]*3)
        for f in fields:
            if f in zlim.keys():
                p.set_zlim(f, zlim[f][0], zlim[f][1])
            if f in cmap.keys():
                p.set_cmap(f, cmap[f])
        p.annotate_text((1.1, 1.08), 'z = \%.2f' \% pf.current_redshift,
                        text_args={'ha': 'right', 'va': 'top'})
        p.save("pics/%s" % pf)
        del p
    pc = PlotCollection(pf)
    ad = pf.h.all_data()
    pc.add_phase_object(ad, ['Density', 'Temperature', 'CellMassMsun'], weight=None)
    pc.save("pics/%s" % pf)
    del pc
    pf.h.clear_all_data()
```

- Run the yt script for the last dataset. For example,
 - python ../anyl.py DD0049/DD0049
- Creates the projections and phase plots and places them in pics/
- Note: I have written the script so that if no argument is given, all datasets are analyzed.
 - python ../anyl.py

Saturday, 19 October 13

6

Saturday, 19 October 13

6

Radiative Cooling and Ultraviolet Background

• Now we can add more physics to the adiabatic simulation.

```
~guest009/cooling/cooling.enzo
```

• Add radiative cooling and non-equilibrium chemistry.

RadiativeCooling = 1 MultiSpecies = 1

• Add optically-thin ultraviolet background

RadiationRedshiftOn	= 7.000000
RadiationRedshiftOff	= 0.000000
RadiationRedshiftFullOn	= 6.000000
Cosmology Sim	ulations

RadiationFieldRedshift= 0.000000Non-cosmology Simulations

Different Ultraviolet Backgrounds

Radiation Parameters

Background Radiation Parameters

RadiationFieldType (external)

This integer parameter specifies the type of radiation field that is to be used. Except for RadiationFieldType = 9, which should be used with MultiSpecies = 2, UV backgrounds can currently only be used with MultiSpecies = 1 (i.e. no molecular H support). The following values are used. Default: 0

- 1 Haardt & Madau spectrum with q_alpha = 1.5
- 2 Haardt & Madau spectrum with q_alpha = 1.8
- 3 Modified Haardt & Madau spectrum to match observations (Kirkman & Tytler 2005).
- 4 Haardt & Madau spectrum with q_alpha = 1.5 supplemented with an X-ray Compton heating background from Madau & Efstathiou (see astro-ph/9902080)
- 9 Constant molecular H2 photo-dissociation rate
- 10 Internally computed radiation field using the algorithm of Cen & Ostriker
- 11 Same as previous, but with very, very simple optical shielding fudge
- 12 Haardt & Madau spectrum with q_alpha = 1.57
- 15 Haardt & Madau 2012. See Table 3 in '2012ApJ...746..125H <http://adsabs.harvard.edu/abs/201

This integer parameter specifies the type of radiation field that is to be used. Except for RadiationFieldType = 9, which should be used with MultiSpecies = 2, UV backgrounds can currently only be used with MultiSpecies = 1 (i.e. no molecular H support). The following values are used. Default: 0

- 1 Haardt & Madau spectrum with q_alpha = 1.5
- 2 Haardt & Madau spectrum with q alpha = 1.8
- 3 Modified Haardt & Madau spectrum to match observations (Kirkman & Tytler 2005).
- 4 Haardt & Madau spectrum with q_alpha = 1.5 supplemented with an X-ray Compton heating background from Madau & Efstathiou (see astro-ph/9902080)
- 9 Constant molecular H2 photo-dissociation rate
- 10 Internally computed radiation field using the algorithm of Cen & Ostriker
- 11 Same as previous, but with very, very simple optical shielding fudge
- 12 Haardt & Madau spectrum with q alpha = 1.57
- 15 Haardt & Madau 2012. See Table 3 in '2012ApJ...746..125H <http://adsabs.harvard.edu/abs/201

Ultraviolet Background (Haardt & Madau 2012)

QSO only 2 z = 1.1z=3.0 0 QSO + Galaxies -2 $^{-4}$ $\log J_{\nu,-22}$ Includes Lyman -6 -----series lines 2 z=4.9 z=6.9 0 -2 -6 10 100 1000 100 1000 10

 $\lambda(\dot{A})$

 $\lambda(\dot{A})$

Ultraviolet Background (Haardt & Madau 2012)

Radiative Cooling and Ultraviolet Background

- This simulation takes 50 minutes to run on my laptop with 2 cores.
- Requires the tabulated UV background in the run directory.

• ~/enzo-stable/input/hm12_photorates.dat

• If you want to run the simulation later, you can copy the parameter file and initial conditions files from the adiabatic simulation

cd ~/sapporo_cosmo
mkdir cooling
cp sapporo_cosmo_nbody/Grid* sapporo_cosmo_nbody/Particle* cooling
cd cooling
cp ~guest009/cooling.enzo .
cp <where enzo is>/enzo.exe .

./enzo.exe -d cooling.enzo

Radiative Cooling and Ultraviolet Background

- I have copied the last output to conival. You can copy it to your directory
 - cp -r ~guest009/cooling/DD0050 .
- Let's inspect it!

z = 3.00

z = 3.00

Radiative Cooling and Ultraviolet Background

- I have also uploaded a IPython notebook to my directory.
 - cp ~guest009/cooling/Cooling.ipynb .

- Let's add more physics! Star formation and supernova feedback.
- Star Formation (original formulation: Cen & Ostriker 1992)
 - Overdense: $ho >
 ho_{
 m SF}$
 - Converging flow: $\nabla \cdot \mathbf{v} < 0$
 - Cooling: $t_{
 m cool} < t_{
 m dyn}$

- Gravitational unstable (originally used, but not in the specific algorithm we'll be using): $M_{\rm cell} > M_J$

• Supernova feedback is modeled with thermal energy injection

• Supernova feedback is modeled with thermal energy injection

- You can find the parameter file in
 - sapporo_cosmo/stars-uvb.enzo

 Star formation and feedback. 	StarParticleCreation StarParticleFeedback	= 32 = 32
• Method 5 \rightarrow 2 ⁵ = 32	PopIIIOverDensityThreshold PopIIIMetalCriticalFraction	= -0.1 = 1e-30
	StarClusterUseMetalField StarClusterUnresolvedModel StarClusterMinDynamicalTime StarClusterIonizingLuminosity StarClusterSNEnergy StarClusterSNRadius StarClusterFormEfficiency StarClusterMinimumMass	= 1 = 1 = 1e+07 = 3e+46 = 1.25e+49 = 100 = 0.07 = 1e7

StarParticleCreation (external)

This parameter is bitwise so that multiple types of star formation routines can be used in a single simulation. For example if methods 1 and 3 are desired, the user would specify 10 ($2^1 + 2^3$), or if methods 1, 4 and 7 are wanted, this would be 146 ($2^1 + 2^4 + 2^7$). Default: 0

```
0 - Cen & Ostriker (1992)
```

- 1 Cen & Ostriker (1992) with stocastic star formation
- 2 Global Schmidt Law / Kravstov et al. (2003)
- 3 Population III stars / Abel, Wise & Bryan (2007)
- 4 Sink particles: Pure sink particle or star particle with wind feedback depending on choice for HydroMethod / Wang et al. (2009)
- 5 Radiative star clusters / Wise & Cen (2009)
- 6 [reserved for future use]
- 7 Cen & Ostriker (1992) with no delay in formation
- 8 Springel & Hernquist (2003)
- 9 Massive Black Hole (MBH) particles insertion by hand / Kim et al. (2010)
- 10 Population III stellar tracers
- 11 Molecular hydrogen regulated star formation

 Star formation and feedback. StarParticleCreation = 32 Method 5 \rightarrow 2⁵ = 32 StarParticleFeedback = 32 PopIII0verDensityThreshold = -0.1 Method 3 (Population III stars) and PopIIIMetalCriticalFraction = 1e - 30method 5 use the same minimum overdensity. Negative number StarClusterUseMetalField = 1 means units in cm⁻³. **Positive** StarClusterUnresolvedModel number is in code units. StarClusterMinDynamicalTime = 1e+07StarClusterIonizingLuminosity = 3e+46StarClusterSNEnergy = 1.25e+49 Critical metallicity to transition StarClusterSNRadius = 100from Population III to Population II. StarClusterFormEfficiency = 0.07 For this simulation, we only want to StarClusterMinimumMass = 1e7consider **Pop II stars**, so we set to a tiny_number.

 Use metal feedback in supernova. 	StarParticleCreation	= 32
· Llos Con & Ostrikar proparintian for	StarParticleFeedback	= 32
time-dependent feedback.	PopIIIOverDensityThreshold PopIIIMetalCriticalEraction	= -0.1 = 1e-30
• Dynamical time (\rightarrow avg. density) of	StarClusterUseMetalField	= 1
a sphere that accretes onto thestar particle.	StarClusterUnresolvedModel	= 1 = 1e+07
 Ionizing photon luminosity (in units 	StarClusterIonizingLuminosity	= 3e+46
of photons / s / M_{\odot})	StarClusterSNEnergy StarClusterSNRadius	= 1.25e+49 = 100
Supernova thermal energy (in units	StarClusterFormEfficiency StarClusterMinimumMass	= 0.07 = 1e7
of erg / M₀)		

• Radius of sphere where the energy is injected (in units of pc)

- Mass fraction of cold gas inside the sphere that is deposited into the star particles.
- Minimum mass (in units of M_☉) of star particles

StarParticleCreation	= 32
StarParticleFeedback	= 32
PopIII0verDensityThreshold	= -0.1
PopIIIMetalCriticalFraction	= 1e-30
StarClusterUseMetalField	= 1
StarClusterMinDynamicalTime	= 1 = 1e+07
StarClusterIonizingLuminosity	= 3e+46
StarClusterSNEnergy	= 1.25e+49
StarClusterSNRadius	= 100
StarClusterFormEfficiency	= 0.07
StarClusterMinimumMass	= 1e7

- Again, this simulation takes some time to complete. About an hour.
- I have uploaded the last output at redshift 3 and IPython notebook to
 - ~guest009/SNe/DD0050
 - ~guest009/SNe/Supernovae.ipynb
- Let's inspect it!

+ Radiative Feedback

- Enzo has two prescriptions to solve the radiative transfer equation:
 - Adaptive ray tracing
 - Flux limited diffusion
- This allows for an inhomogenous radiation field with spatially dependent absorption and emission coefficients.
- Can be used in conjunction with a radiation background.

+ Radiative Feedback

- Enzo has two prescriptions to solve the radiative transfer equation:
 - Adaptive ray tracing
 - Flux limited diffusion

- This allows for an inhomogenous radiation field with spatially dependent absorption and emission coefficients.
- Can be used in conjunction with a radiation background.

Cosmological Radiative Transfer Equation

$$I_{\nu} \equiv I(\nu, \mathbf{x}, \Omega, t)$$

 $\begin{array}{l} n := normal vector \\ a := scale factor \\ \bar{a} := a/a_{em} \\ H := Hubble factor \\ \mathbf{v} := frequency \end{array}$

$$\frac{1}{c} \frac{\partial I_{\nu}}{\partial t} + \frac{\hat{n} \cdot \nabla I_{\nu}}{\bar{a}} - \frac{H}{c} \left(\nu \frac{\partial I_{\nu}}{\partial \nu} - 3I_{\nu} \right) = -\kappa_{\nu} I_{\nu} + j_{\nu}$$

Cosmological Radiative Transfer Equation

n := normal vectora := scale factor $\bar{a} := a/a_{em}$ H := Hubble factor $\boldsymbol{\nu} :=$ frequency

$$\frac{1}{c} \frac{\partial I_{\nu}}{\partial t} + \frac{\hat{n} \cdot \nabla I_{\nu}}{\bar{a}} - \frac{H}{c} \left(\nu \frac{\partial I_{\nu}}{\partial \nu} - 3I_{\nu} \right) = -\kappa_{\nu} I_{\nu} + j_{\nu}$$

$$\stackrel{Ooshic Good at in the second secon$$

 $I_{\nu} \equiv I(\nu, \mathbf{x}, \Omega, t)$

Simplifications – "Local" Approximation

- 1. Short timesteps ($\bar{a} = 1$)
- 2. Ignore cosmological redshift and dilution (may become important >50 Mpc)

Simplifications – "Local" Approximation

- 1. Short timesteps ($\bar{a} = 1$)
- 2. Ignore cosmological redshift and dilution (may become important >50 Mpc)

Simplifications – "Local" Approximation

- 1. Short timesteps ($\bar{a} = 1$)
- 2. Ignore cosmological redshift and dilution (may become important >50 Mpc)

RT Equation along a Ray

- Consider point sources of radiation
- Initially, the radiation flux is split equally among all rays.

$$\frac{1}{c}\frac{\partial P}{\partial t} + \frac{\partial P}{\partial r} = -\kappa P$$

• P := photon flux in the ray

Adaptive Ray Tracing (Enzo+Moray)

- Ray directions and splitting based on HEALPix (Gorski et al. 2005)
- Coupled with (magneto-) hydrodynamics of Enzo
- Rays are split into 4 child rays when the solid angle is large compared to the cell face area
- Well-suited for AMR
- Can calculate the photo-ionization rates so that the method is photon conserving.
- MPI/OpenMP hybrid parallelized.

Adaptive Ray Tracing (Enzo+Moray)

- H + He ionization (heating)
- X-rays (secondary ionizations)
- Lyman-Werner transfer (based on Draine & Bertoldi shielding function)
- Choice between energy discretization and general spectral shapes (column density lookup tables, see C²-Ray)
- See Mirocha+ (2012) for optimized choices for energy bins.
- Radiation pressure from continuum
- Choice between c = Ac, ∞
- Can delete a ray when its flux drops below some fraction of the UVB for local UV feedback.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

- Sources are grouped on a binary tree.
- On each leaf, a "super-source" is created that has the center of luminosity.
- After the ray travel ~3-5 times the source separation, the rays merge.
- Recursive.
- Have run simulations with 25k point sources.

+ Radiative Feedback

- Radiative transfer ON
- Minimum rays per cell (angular resolution)
- Hydrogen photo-ionization only
- Radiation periodic boundary —
- Ray merging ON
- Ray merging radius (in units of separation of source pairs)

sapporo_cosmo/stars-rt.enzo

Star formation and feedback parameters

RadiativeTransfer = 1		
RadiativeTransferRaysPerCell	-	3.100000
RadiativeTransferFluxBackgroundLimit	-	0.01
RadiativeTransferInitialHEALPixLevel	-	1
RadiativeTransferHydrogenOnly	=	1
RadiativeTransferOpticallyThinH2	-	0
RadiativeTransferPeriodicBoundary	-	1
RadiativeTransferAdaptiveTimestep	-	1
RadiativeTransferSourceClustering	-	1
RadiativeTransferPhotonMergeRadius	=	3.0

+ Radiative Transfer

• This simulation only runs to z = 7, so we can run this simulation.

```
cd ~/sapporo_cosmo
mkdir RT
cp stars-rt.enzo RT
cp sapporo_cosmo_nbody/Grid* sapporo_cosmo_nbody/Particle* RT
cp ~/enzo-stable/input/hm12_photorates.dat RT
cd RT
cp ~/enzo-stable/src/enzo/enzo.exe .
./enzo.exe -d stars-rt.enzo
```


Summary

- Today we have covered some advanced topics in cosmology simulations.
- Usually when doing research, it is best to introduce physics progressively to understand the effect of each physical process.
- We have compared the same cosmological volume with the following physics.
 - Adiabatic equation of state
 - + Radiative cooling (H, He) and an ultraviolet radiation background
 - + Star formation and supernova feedback
 - + Stellar radiative feedback, using adaptive ray tracing