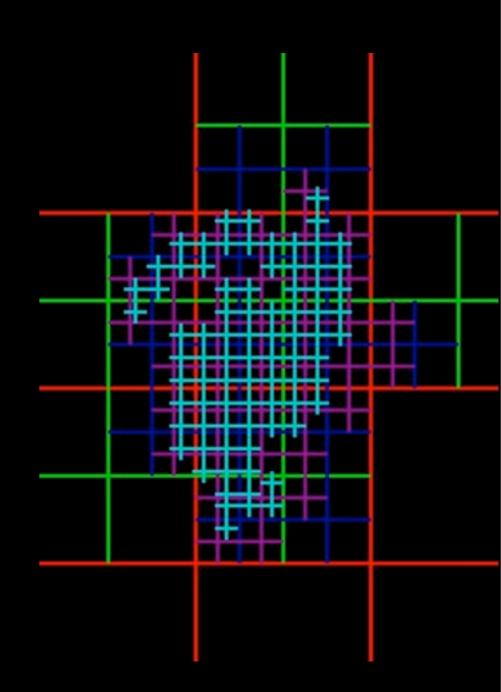
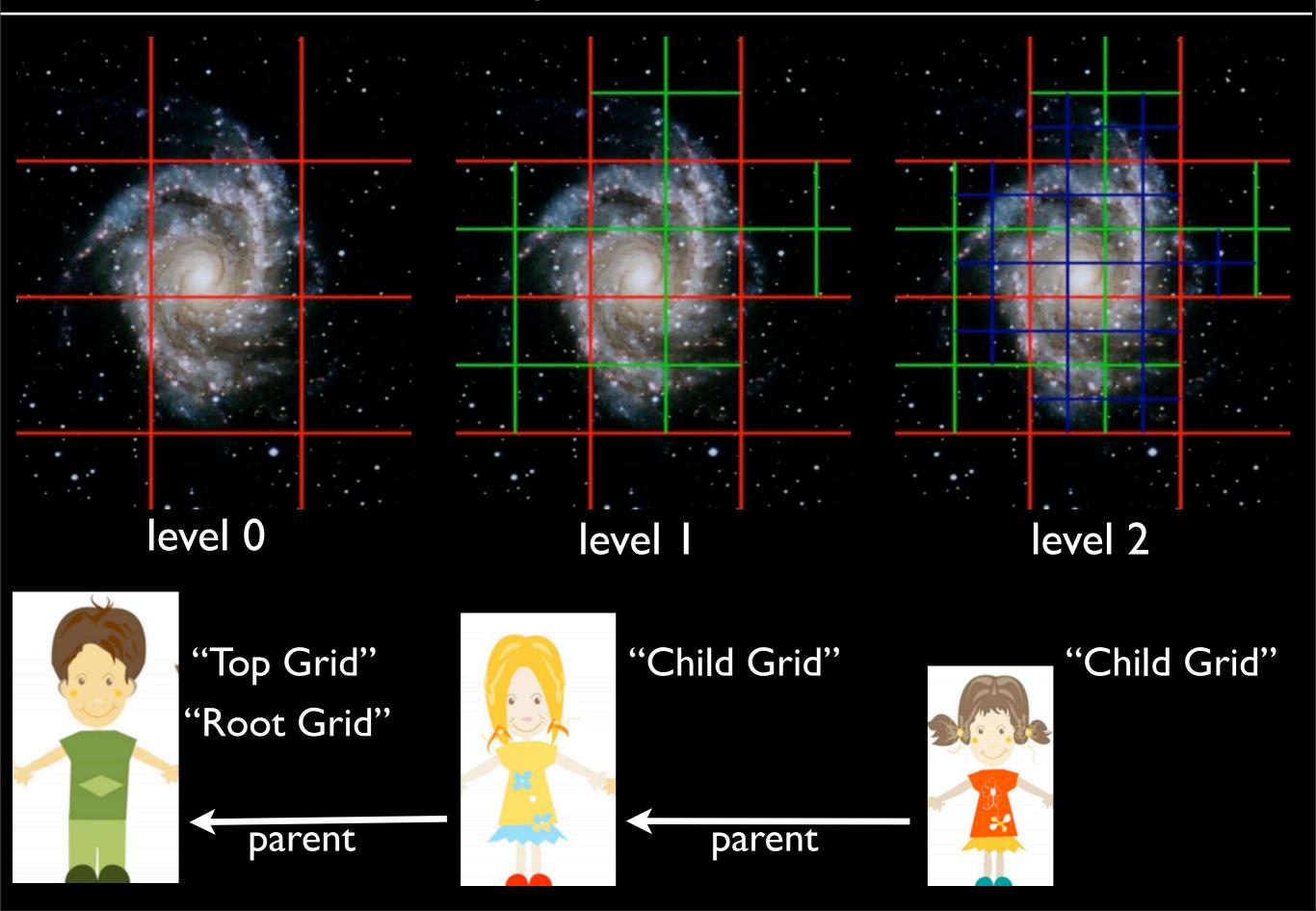
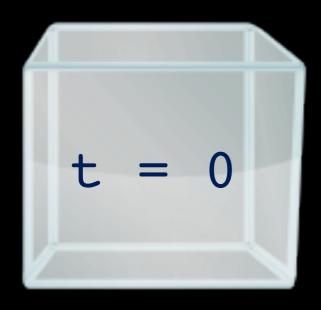
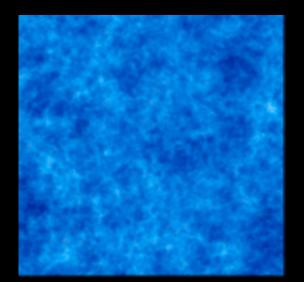

Creating a new simulation





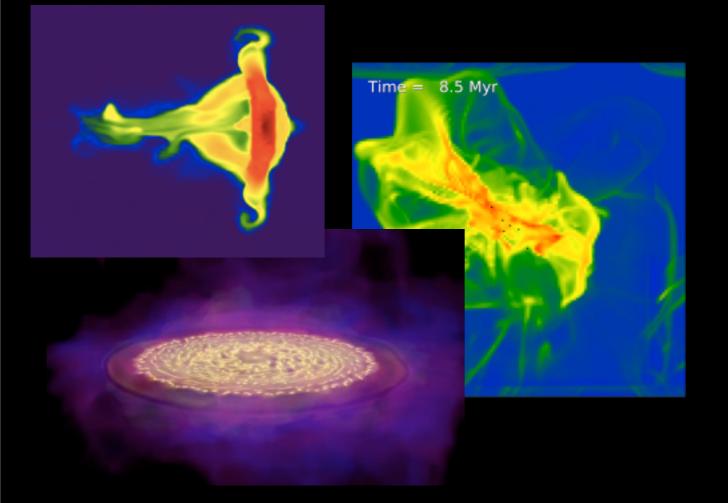
AMR: Adaptive mesh refinement




AMR: Adaptive mesh refinement

Initial Conditions

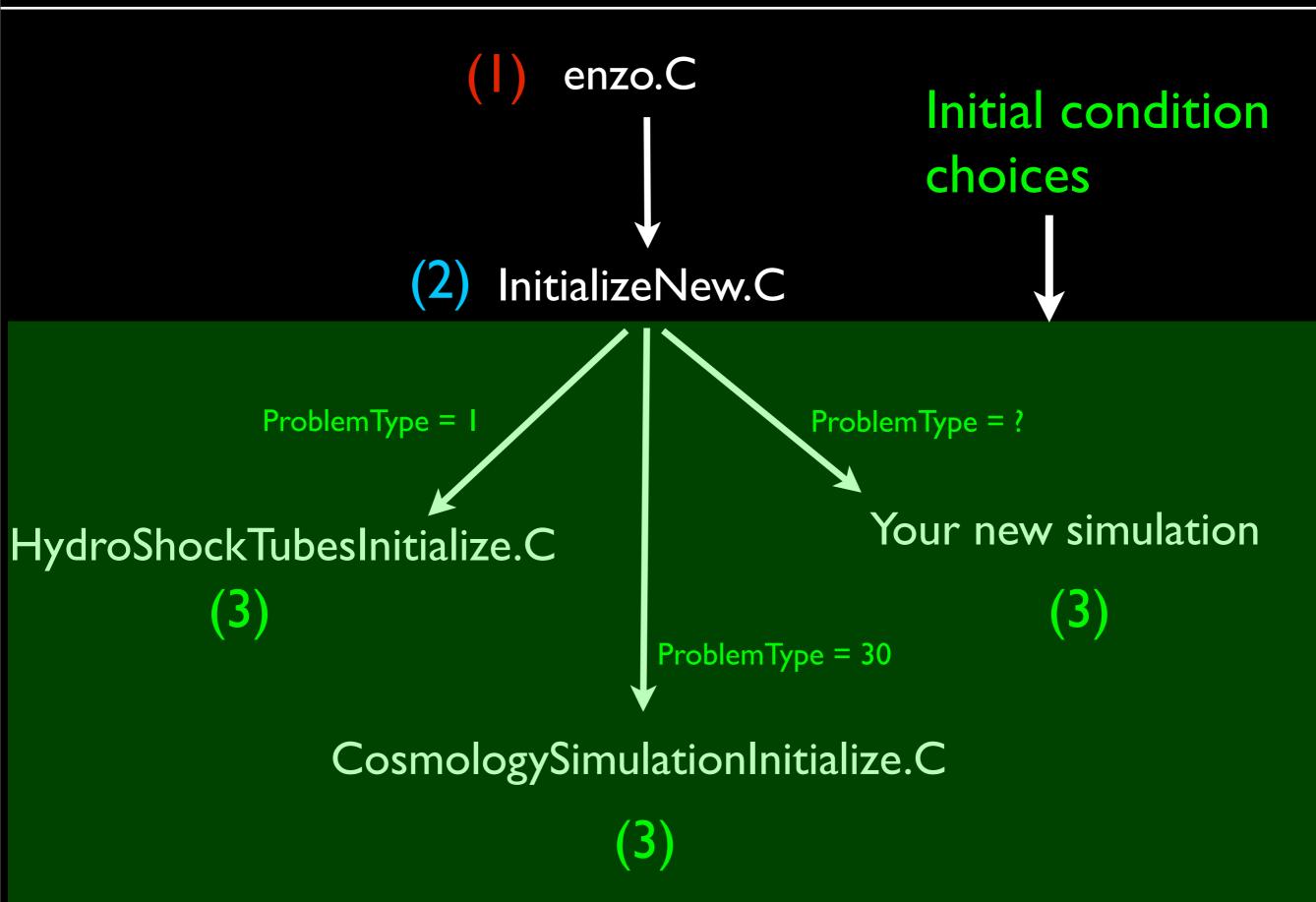
Simulation box at start



e.g. cosmology simulation

small density perturbations (changes)

Simulations


A cosmology simulation is 1 choice...

But other simulations do not start at z = 50

e.g. galaxy discs, colliding clouds, star formation ...

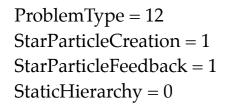
Running Enzo

> cd enzo-stable/src/enzo

> ls *Initialize*.C

000

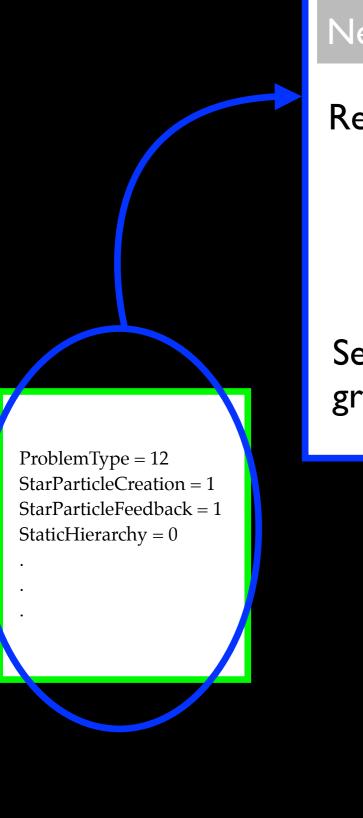
tionInitialize.0 chInitialize.C ExternalBoundary_InitializeExternalBoundaryFaceIO.C FOF Initialize. FSMultiSourceInitialize.C Initialize.C PastSiblingLocatorInitialize.C PastSiblingLocatorInitializeStaticChainingMesh.C FreeExpansionInitialize.C GalaxySimulationInitialize.C GravityEquilibriumTestInitialize.C ClusterInitializeGrid.C CollapseTestInitializeGrid.C ConductionBubbleInitialize.C ductionCloudInitialize.C ductionTestInitialize.C CoolingTestInitializeGrid.C moTonizationInitializeGrid.C mologyInitializeParticles.C nologySimulationInitializeGrid.C ubleMachInitializeGrid.C FSHultiSourceInitializeGrid.C FreeExpansionInitializeGrid.C GalaxySimulationInitializeGrid.C GravityEquilibriumTestInitializeGrid.C droShockTubesInitializeGrid.C plosionInitializeGrid.C InitializeGravitatingMassField.C InitializeGravitatingMassFieldParticles.C InitializeRadiativeTransferFields.C InitializeSource.C InitializeUniformGrid.C KHInitializeGrid.C MHDBlastInitializeGrid.C NestedCosmologySimulationInitializeGrid.C NohInitializeGrid.C eZoneFreefallTestInitializeGrid.C PhotonTestInitializeGrid.C otonTestRestartInitializeGrid.C PoissonSolverTestInitializeGrid.C PressurelessCollapseInitialize.C ostellarCollar seTnitializeGrid.C tSinkRestartInitialize.C UNTOnizationClumpInitializeGrid.C HIonizationStee TnitializeGrid.C HIonizationTestInitializeGrid.C vdroConstTestInitializeGrid.C arshakWayeInitializeGrid.C NydroPulseTestInitializeGrid.C iroRadShockInitializeGrid.C iroStreamTestInitializeGrid.C RadiatingShockInitializeGrid.C RotatingCylinderInitialize.C RotatingDiskInitializeGrid.C dovBlastInitializeGrid.C edovBlastInitializeGrid3D.C Grid_ShearingBox2DInitializeGrid.C Grid_ShearingBoxInitializeGrid.C sleighrenzo Elizabeth\$


eInitializeGrid.C ockTubesInitialize.C ImplosionInitialize.C InitializeCloudyCooling.C InitializeEquilibriumCoolData.C getEquilibriumCoolData.C InitializeEM12Photorates.C InitializeLocal.C InitializeLymanWernerTable.C InitializeMovieFile.C InitializeNew.C InitializePythonInterface.C InitializeRadiationFieldData.C InitializeRadiativeTra InitializeRateData.C KHInitialize.C DBlastInitialize.(Initialize nstTestInitialize.0 rshakWaveInitialize.C TestInitialize.C roRadShockInitialize.C estInitialize.C RadiativeTransferInitialize.C ngCylinderInitialize.C DiskInitialize.C SedoyBlastInitialize.C ShearingBox2DInitialize.C oxInitialize.C oxStratifiedInitialize.C ShockInABoxInitialize.C ckPoolInitialize.C hericalInfallInitialize.C StarParticleInitialize.C StarParticlePopIII_IMPInitialize.C StratifiedMediumExplosionInitialize.C rnovaRestartInitialize.C TestGravityInitialize.C TestGravitySphereInitialize.C TestOrbitInitialize.C TurbulenceSimulationInitialize.C ePoolInitialize.C SeldovichPancakeInitialize.C FLDProblem_Initialize.C FLDSplit_Initialize.C

Different simulation initial conditions

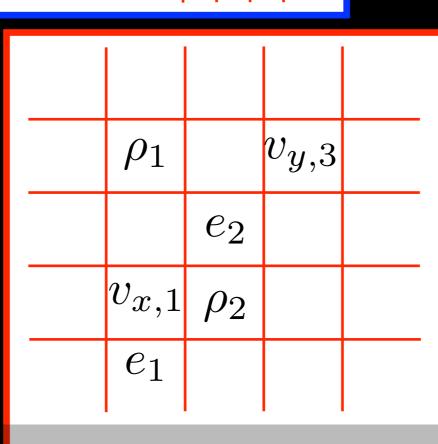
SimulationInitialize.C Grid_SimulationInitializeGrid.C

e.g.


ZeldovichPancakeInitialize.C Grid_ZeldovichPancakeInitialize.C

.

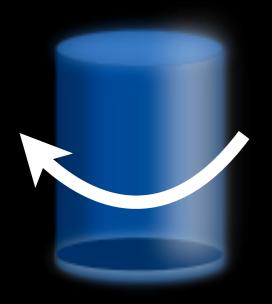
.


enzo.exe param.enzo

NewSimulationInitialize.C

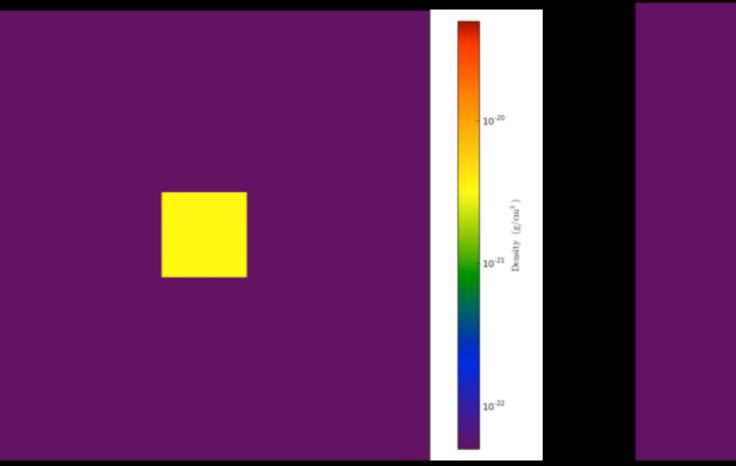
Read parameters

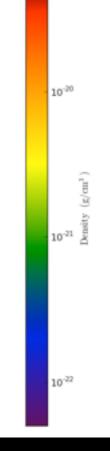
Set up grid levels



т

Grid_NewSimulation InitializeGrid.C





x-direction

on conival:

Copy:

> cp /home/tasker/workshop2013/workshop/ NewRotatingCylinderInitialize.C .

> cp /home/tasker/workshop2013/workshop/ Grid_NewRotatingCylinderInitializeGrid.C .

> cp /home/tasker/workshop2013/workshop/ NewRotatingCylinder.enzo .

Read:

> emacs -nw NewRotatingCylinderInitialize.C

NewRotatingCylinderInitialize.C

(called by InitializeNew.C)

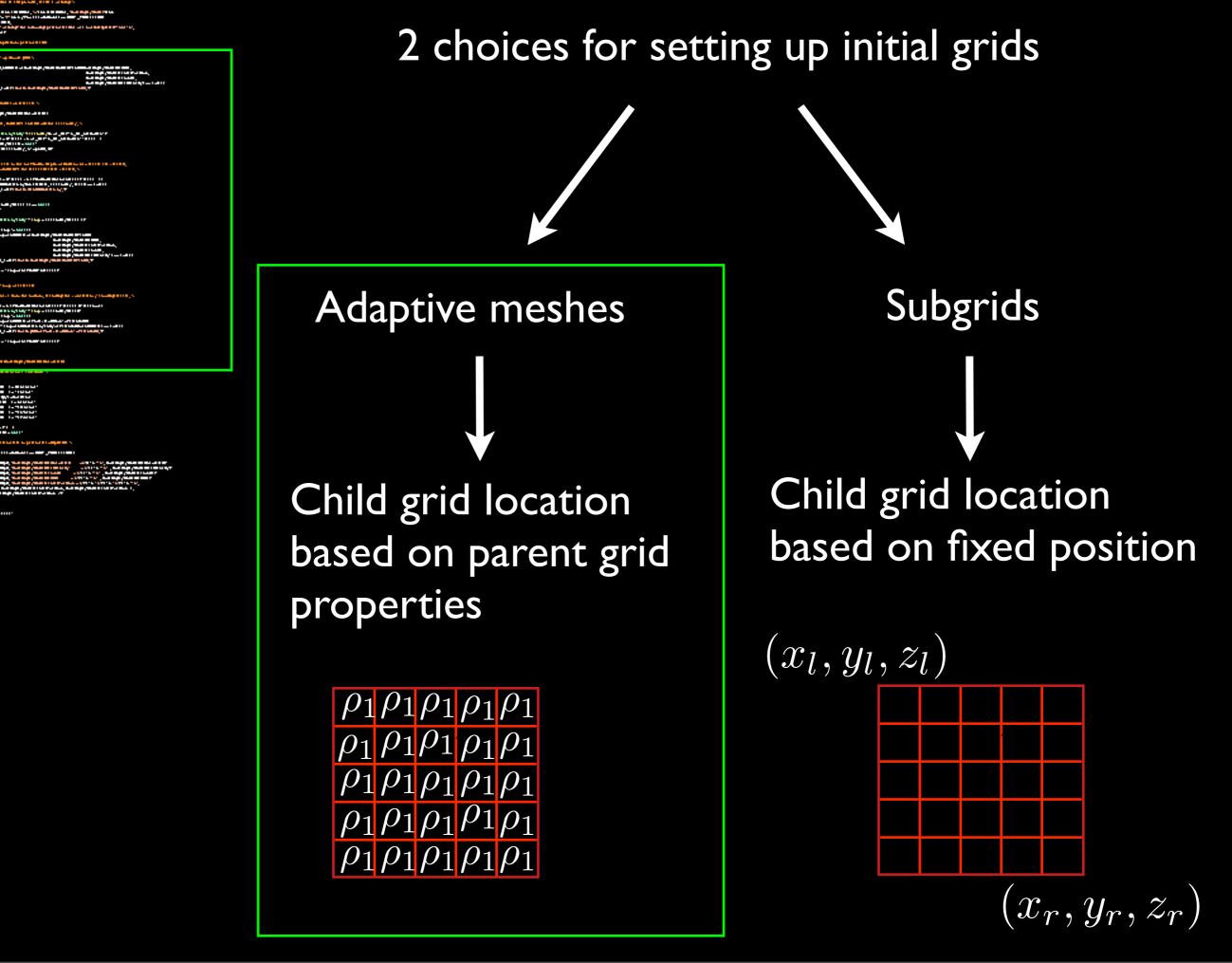
на се продати на селото на село на перетока на селото на перетока на селото на перетока на селото на перетока на селото на перетока на селото на перетока на селото на с

ан английн улаг бур улаг ан сан а сүнэг с. Английн улаг английн уссан ус

and the state of the second states of the second st

and a supering the supering of the super-

and the second second


, and the construction of the second s

.....

and a second second

Read parameters

Set up grid levels

NewRotatingCylinderInitialize.C

FLOAT RotatingCylinderCenterPosition[MAX_DIMENSION]; for(dim = 0; dim < MAX_DIMENSION; dim++) RotatingCylinderCenterPosition[dim] = 0.5*(DomainRightEdge[dim]+DomainLeftEdge[dim]); // middle of the box

float RotatingCylinderVelocity[3] = {0.0, 0.0, 0.0}; // gas initally at rest
FLOAT RotatingCylinderRadius = 0.3;
float RotatingCylinderLambda = 0.05;
float RotatingCylinderOverdensity = 20.0;
int RotatingCylinderRefineAtStart = 1;

/* read input from file */

while (fgets(line, MAX_LINE_LENGTH, fptr) != NULL) {

ret = 0;

- /* read parameters specifically for radiating shock problem*/
- ret += sscanf(line, "RotatingCylinderOverdensity = %"FSYM, &RotatingCylinderOverdensity);
- ret += sscanf(line, "RotatingCylinderLambda = %"FSYM, &RotatingCylinderLambda);
- ret += sscanf(line, "RotatingCylinderRefineAtStart = %"ISYM, &RotatingCylinderRefineAtStart);
- ret += sscanf(line, "RotatingCylinderRadius = %"PSYM, &RotatingCylinderRadius);
- ret += sscanf(line, "RotatingCylinderCenterPosition = %"PSYM" %"PSYM" %"PSYM, RotatingCylinderCenterPosition, RotatingCylinderCenterPosition+1, RotatingCylinderCenterPosition+2);

/* if the line is suspicious, issue a warning */

"*** warning: the following parameter line was not interpreted:\n%s\n", line);

Check we've not missed any

}// end input from parameter file

Set defaults

Read problem-specific parameters

if (TopGrid.GridData->RotatingCylinderInitializeGrid(RotatingCylinderRadius, RotatingCylinderCenterPosition, RotatingCylinderLambda, RotatingCylinderOverdensity) == f

ENZO_FAIL("Error in RotatingCylinderInitializeGrid.");

/* Set up initial AMR levels */

if (RotatingCylinderRefineAtStart) {

/* Declare, initialize and fill out the LevelArray. */

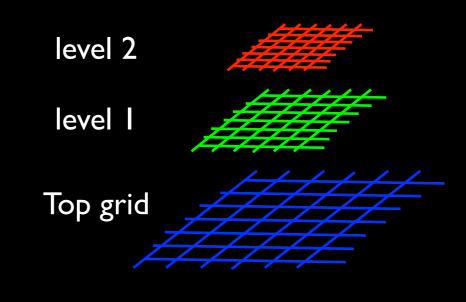
LevelHierarchyEntry *LevelArray[MAX_DEPTH_OF_HIERARCHY]; for (level = 0; level < MAX_DEPTH_OF_HIERARCHY; level++) LevelArray[level] = NULL; AddLevel(LevelArray, &TopGrid, 0);

/* Add levels to the maximum depth or until no new levels are created, and re-initialize the level after it is created. */

```
for (level = 0; level < MaximumRefinementLevel; level++) {
    if (RebuildHierarchy(&MetaData, LevelArray, level) == FAIL) {
        ENZO_FAIL("Error in RebuildHierarchy.");
    }
}</pre>
```

```
if (LevelArray[level+1] == NULL)
    break;
```

```
LevelHierarchyEntry *Temp = LevelArray[level+1];
```


while (Temp != NULL) {

Temp = Temp->NextGridThisLevel;

} // end: loop over levels

Set ρ, e, \overline{v} cells in top grid

Create AMR hierarchy

Set ρ, e, \bar{v} cells in child grid

Largely identical for all problem types

Grid_NewRotatingCylinderInitializeGrid.C

(called by NewRotatingCylinderInitialize.C)

> emacs -nw Grid_NewRotatingCylinderInitializeGrid.C

Assign memory for ho, e, \overline{v} fields

Set ρ, e, \bar{v} for each cell

Grid_NewRotatingCylinderInitializeGrid.C

/* create fields */

NumberOfBaryonFields = 0; FieldType[NumberOfBaryonFields++] = Density; FieldType[NumberOfBaryonFields++] = TotalEnergy; if (DualEnergyFormalism) FieldType[NumberOfBaryonFields++] = InternalEnergy; int vel = NumberOfBaryonFields; FieldType[NumberOfBaryonFields++] = Velocity1; FieldType[NumberOfBaryonFields++] = Velocity2; FieldType[NumberOfBaryonFields++] = Velocity3;

Create
$$\rho, e, \overline{v}$$
 fields

```
if (ProcessorNumber != MyProcessorNumber)
  return SUCCESS;
```

Only do this on I processor

/* declarations */

FLOAT x = 0, y = 0, z = 0, radius, z_distance, x_velocity = 0.0, y_velocity = 0.0, z_velocity = 0.0; float sintheta, costheta, omega; float outside_density = 1.0, outside_energy = 0.5, density = 1.0, energy = 0.5; int i, j, k, dim, cellindex;

/* compute size of fields */

int size = 1; for (dim = 0; dim < GridRank; dim++) size *= GridDimension[dim];

/* allocate fields */

```
int field;
for (field = 0; field < NumberOfBaryonFields; field++)
if (BaryonField[field] == NULL)
BaryonField[field] = new float[size];
```

int DensNum, GENum, TENum, Vel1Num, Vel2Num, Vel3Num, MetalNum; if (this->IdentifyPhysicalQuantities(DensNum, GENum, Vel1Num, Vel2Num, Vel3Num, TENum) == FAIL) { ENZO_FAIL("Error in IdentifyPhysicalQuantities.\n");

Assign memory for fields

Useful function for finding fields

```
for (k = 0; k < GridDimension[2]; k++)
for (j = 0; j < GridDimension[1]; j++)
for (i = 0; i < GridDimension[0]; i++) {
    cellindex = i + j*GridDimension[0] + k*GridDimension[0]*GridDimension[1];</pre>
```

energy = outside_energy; density = outside_density;

- x = CellLeftEdge[0][i] + 0.5*CellWidth[0][i];
- y = CellLeftEdge[1][j] + 0.5*CellWidth[1][j];z = CellLeftEdge[2][k] + 0.5*CellWidth[2][k];
- /* Find distance from center. */
- radius = POW(x-RotatingCylinderCenterPosition[0], 2.0) + POW(y-RotatingCylinderCenterPosition[1], 2.0);
- radius = sqrt(radius); // ok, now it's just radius
- z_distance = fabs(z-RotatingCylinderCenterPosition[2]);
- if ((radius <= RotatingCylinderRadius) && (z_distance <= RotatingCylinderRadius)) {
 // inside the cylinder</pre>
- density = outside_density * RotatingCylinderOverdensity;
- sintheta = (y-RotatingCylinderCenterPosition[1])/radius; costheta = (x-RotatingCylinderCenterPosition[0])/radius;

// x,y and z velocity.

x_velocity = -1.0*sintheta*omega*radius; y_velocity = costheta*omega*radius; z_velocity = 0.0;

energy = outside_energy / RotatingCylinderOverdensity;

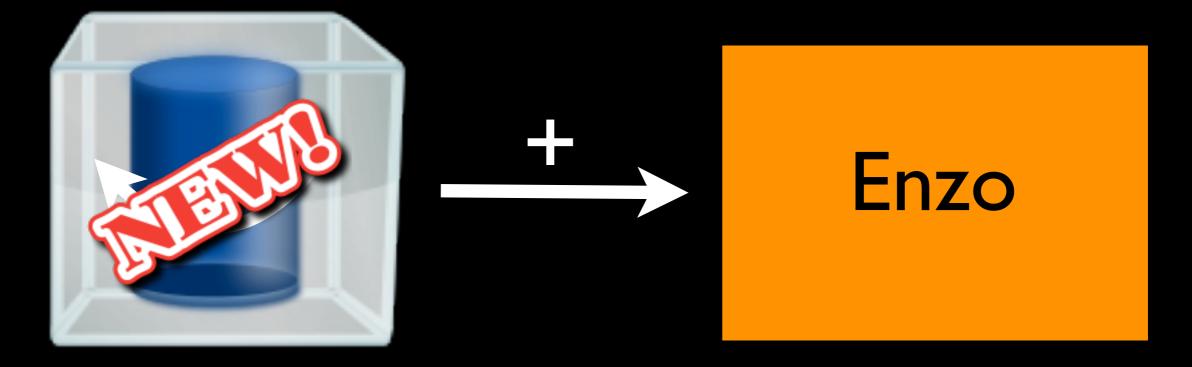
} // if (r <= RotatingCylinderRadius)

BaryonField[DensNum][cellindex] = density;

BaryonField[Vel1Num][cellindex] = x_velocity; BaryonField[Vel2Num][cellindex] = y_velocity; BaryonField[Vel3Num][cellindex] = z_velocity;

BaryonField[TENum][cellindex] = energy;

Loop over cells


set background values

Cell position

$ho, e, ar{v}$ inside cylinder

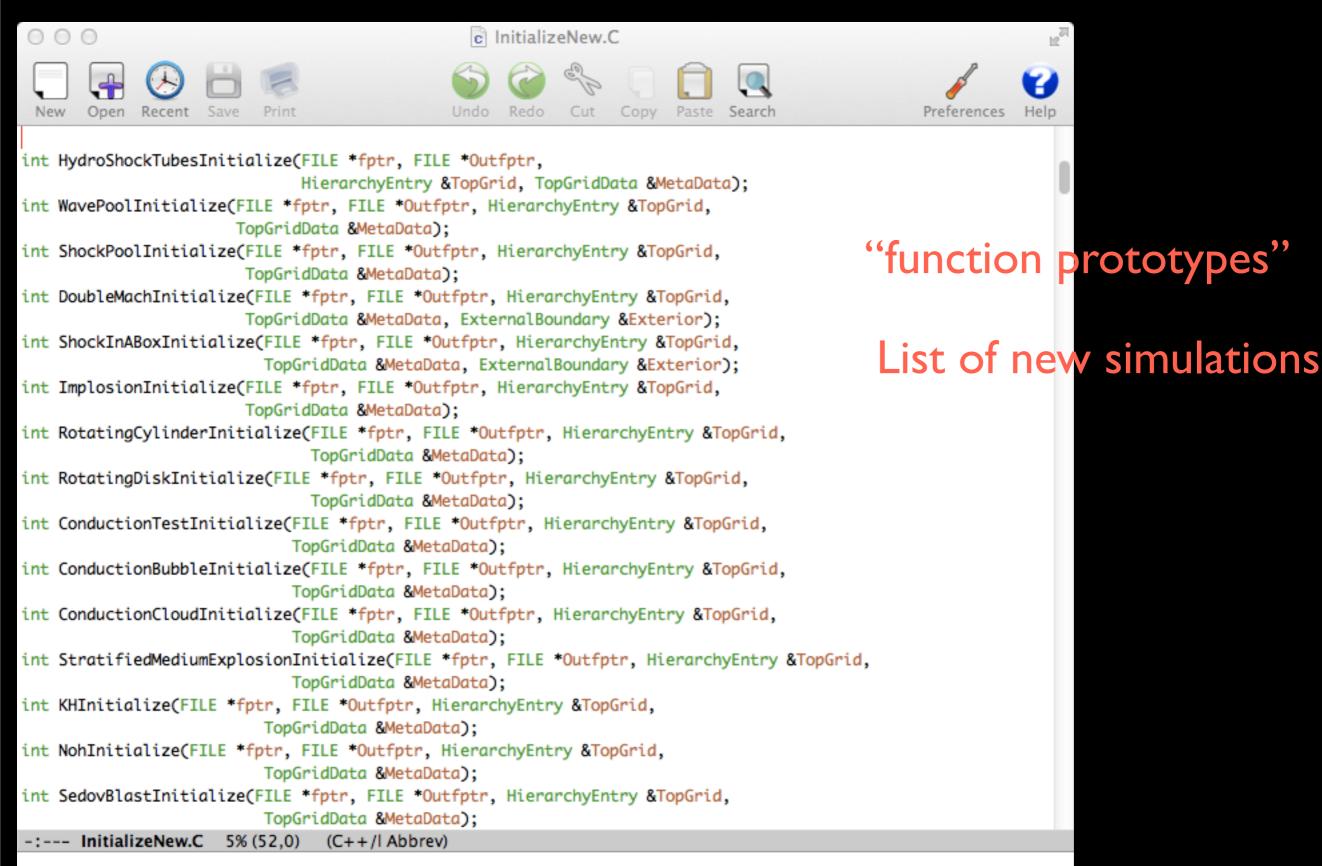
Set final field value

Now we must add this simulation to Enzo

(I) put files in code directory:

> mv NewRotatingCylinderInitialize.C ~/enzo-stable/src/ enzo/.

> mv Grid_NewRotatingCylinderInitializeGrid.C ~/enzostable/src/enzo/.


(2) add to InitializeNew.C

> cd ~/enzo-dev/src/enzo

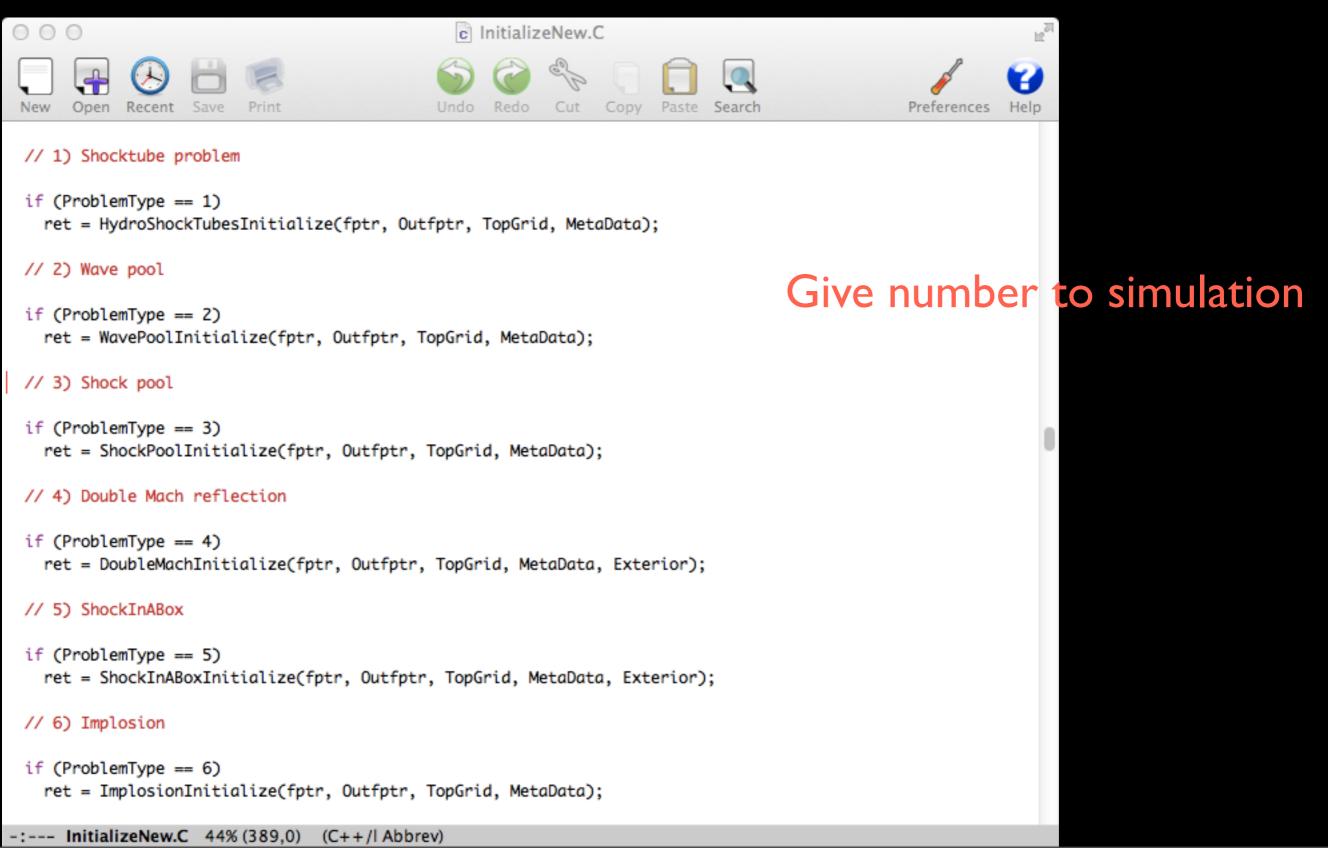
emacs -nw InitializeNew.C

000		c Ini	tializeNew.C			
New Open Re	Cent Save Print	Undo F	tedo Cut Cop	y Paste Search	Preferenc	ces He
<pre>/ / written by: / date: / modified1: / date: / modified2: / date: / modified3: / date: / / PURPOSE: /</pre>	November, 1994 Robert Harkness September 2004	*****	*****	****		
*****	*****	*****	*****	*****/		
// This routine	e intializes a new simu	lation based on	the parameter	file.		
<pre>#ifdef USE_MPI #include "mpi.h #endif /* USE_M</pre>						

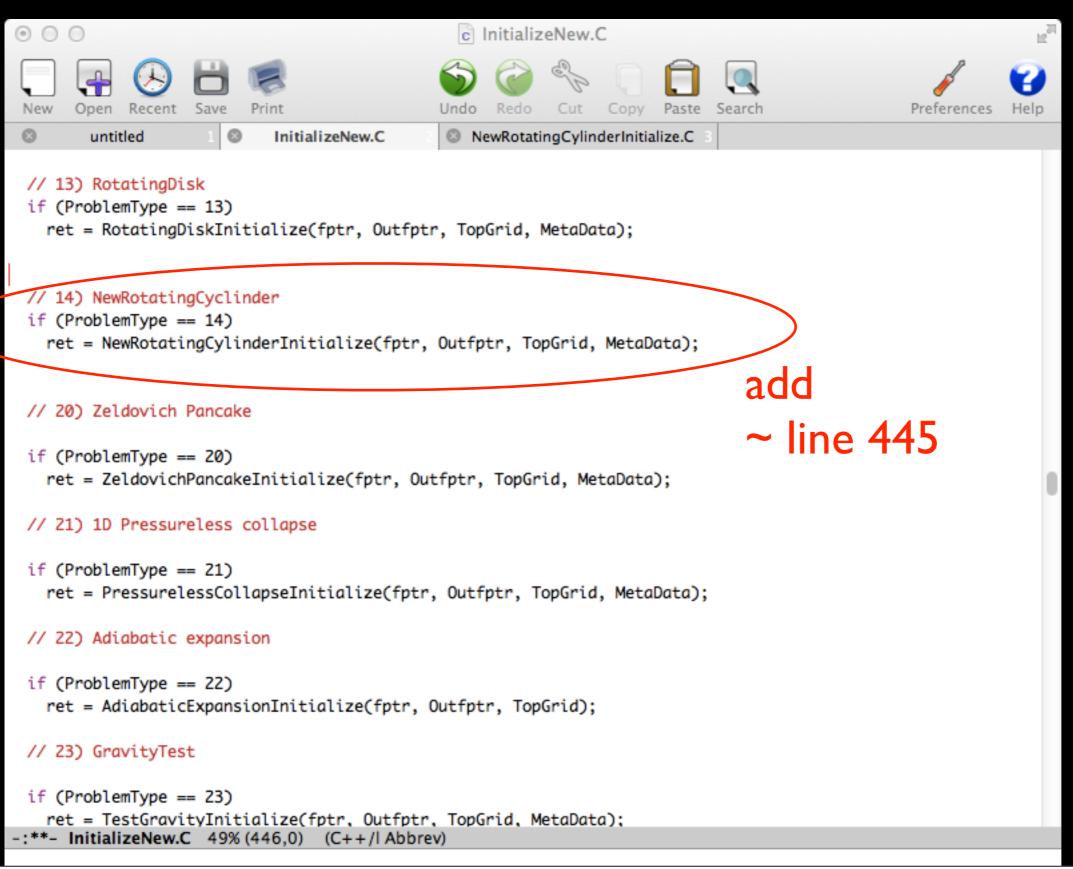
(2) add to InitializeNew.C

> emacs NewRotatingCylinderInitialize.C

PP


<pre>#include "TopGridData.h" #include "TopGridData.h" winclude "phys_constants.h" void AddLevel(LevelHierarchyEntry *Array], HierarchyEntry *Grid, int level); int RebuildHierarchy(TopGridData *MetaData, LevelHierarchyEntry *LevelArray], int level); void WriteListOfFloats(FILE *fptr, int N, FLOAT floats]); Int NewRotatingCylinderInitialize(FILE *fptr, FILE *Outfptr, HierarchyEntry &TopGrid,</pre>	#include "H	lierarchy.h"
<pre>void AddLevel(LevelHierarchyEntry *Array], HierarchyEntry *Grid, int level); int RebuildHierarchy(TopGridData *MetaData, LevelHierarchyEntry *LevelArray], int level); void WriteListOfFloats(FILE *fptr, int N, FLOAT floats]); int NewRotatingCylinderInitialize(FILE *fptr, FILE *Outfptr, HierarchyEntry &TopGrid,</pre>	#include "T	opGridData.h"
<pre>int RebuildHierarchy(TopGridData *MetaData, LevelHierarchyEntry *LevelArray[], int level); void WriteListOfFloats(FILE *fptr, int N, FLOAT floats[]); int NewRotatingCylinderInitialize(FILE *fptr, FILE *Outfptr, HierarchyEntry &TopGrid,</pre>	#include "p	hys_constants.h"
<pre>LevelHierarchyEntry *LevelArray[], int level); void WriteListOfFloats(FILE *fptr, int N, FLOAT floats]); int NewRotatingCylinderInitialize(FILE *fptr, FILE *Outfptr, HierarchyEntry &TopGrid,</pre>	void AddLev	<pre>vel(LevelHierarchyEntry *Array[], HierarchyEntry *Grid, int level);</pre>
<pre>LevelHierarchyEntry *LevelArray[], int level); void WriteListOfFloats(FILE *fptr, int N, FLOAT floats]); int NewRotatingCylinderInitialize(FILE *fptr, FILE *Outfptr, HierarchyEntry &TopGrid,</pre>	int Rebuild	Hierarchy(TopGridData *MetaData,
<pre>void WriteListOfFloats(FILE *fptr, int N, FLOAT floats[]); int NewRotatingCylinderInitialize(FILE *fptr, FILE *Outfptr, HierarchyEntry &TopGrid,</pre>		
<pre>int NewRotatingCylinderInitialize(FILE *fptr, FILE *Outfptr, HierarchyEntry &TopGrid,</pre>	void WriteL	
<pre>TopGridData &MetaData) { char *DensName = "Density"; char *TEName = "TotalEnergy"; char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; /* local declarations */</pre>		
<pre>TopGridData &MetaData) { char *DensName = "Density"; char *TEName = "TotalEnergy"; char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; } /* local declarations */</pre>		
<pre>TopGridData &MetaData) { char *DensName = "Density"; char *TEName = "TotalEnergy"; char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; </pre>		
<pre>TopGridData &MetaData) { char *DensName = "Density"; char *TEName = "TotalEnergy"; char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; } /* local declarations */</pre>	int NewRota	tingCylinderInitialize(ETLE *fntr ETLE *Outfntr HierarchyEntry &TonGrid
<pre>{ char *DensName = "Density"; char *TEName = "TotalEnergy"; char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; /* local declarations */</pre>	the nemoto	
<pre>char *DensName = "Density"; char *TEName = "TotalEnergy"; char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity";</pre>	5	Toportubuca amecabaca)
<pre>char *TEName = "TotalEnergy"; char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; /* local declarations */</pre>	1	
<pre>char *TEName = "TotalEnergy"; char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; /* local declarations */</pre>	char *Den	sName = "Density";
<pre>char *GEName = "GasEnergy"; char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; /* local declarations */</pre>		
<pre>char *Vel1Name = "x-velocity"; char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; /* local declarations */</pre>		
<pre>char *Vel2Name = "y-velocity"; char *Vel3Name = "z-velocity"; /* local declarations */</pre>		
<pre>char *Vel3Name = "z-velocity"; /* local declarations */</pre>		
/* local declarations */		
	chui fet	Shalle - 2 veroercy;
char line[MAX_LINE_LENGTH]:	/* local d	leclarations */
	char line	TMAX LITNE LENGTHIC
int i, j, dim, ret, level;		,
the r, j, atm, rec, rever,		, utill, rec, tevel,
FLOAT RotatingCylinderCenterPositionFMAX_DIMENSION1:	FLOAT Det	atingCylinderConterPosition DWAY DIMENSION].

NewRotatingCylinderInitialize.C



(2) add to InitializeNew.C

(2) add to InitializeNew.C

(3) add to Grid.h

> emacs Grid.h

○ ○ ○ h Grid.h	R _M
New Open Recent Save Print New Open Recent Save Print Image: Copy open Search Preferences	P Help
Intitled 1 NewRotatingCylinderInitialize.C 2 Grid.h	
<pre>/************************************</pre>	

<pre>#ifndef GRID_DEFINED #define GRID_DEFINED #include "ProtoSubgrid.h" #include "ListOfParticles.h" #include "region.h" #include "FastSiblingLocator.h" #include "StarParticleData.h" #include "Star.h" #include "FOF_allvars.h" #include "FOF_allvars.h" #include "MemoryPool.h" #ifdef ECUDA #include "hydro_rk/CudaMHD.h" #endif</pre>	

(3) add to Grid.h

FLOAT RadiatingShockSedovBlastRadius,

float RadiatingShockEnergy,

float RadiatingShockPressure,

float RadiatingShockKineticEnergyFraction,

float RadiatingShockRhoZero,

float RadiatingShockVelocityZero,

int RadiatingShockRandomSeedInitialize,

FLOAT RadiatingShockCenterPosition[MAX_DIMENSION]);

/* Initialize a grid for a rotating cylinder collapse */
int RotatingCylinderInitializeGrid(FLOAT RotatingCylinderRadius,

FLOAT RotatingCylinderCenterPosition[MAX_DIMENSION],

float RotatingCylinderLambda,

float RotatingCylinderOverdensity);

add ~ line 1820

Grid.h

(3) add to Make.config.objects

> emacs Make.config.objects

#		
# FIL	E:	Make.config.objects
#		
# DES	CRIPTION:	Make include file defining OBJS_MAIN
#		
# AUT	HOR:	James Bordner (jobordner@ucsd.edu)
#		
# DAT	E:	2007-02-21
#		
#====		
4		
		object files
# Dei #		
r .		
DBJS	CONFIG_LIE	3 = \
OBJS_	CONFIG_LIE	
OBJS_	acml_st	
OBJS_	acml_st Adiabat	t1.o \
OBJS_	acml_st Adiabat AdjustF	t1.o ∖ ticExpansionInitialize.o ∖
OBJS_	acml_st Adiabat Adjust Adjust	t1.o ∖ ticExpansionInitialize.o ∖ RefineRegion.o ∖
OBJS_	acml_st Adiabat Adjust Adjust AMRH5wr	t1.o \ ticExpansionInitialize.o \ RefineRegion.o \ MustRefineParticlesRefineToLevel.o \
OBJS_	acml_st Adiabat Adjust Adjust AMRH5w Analysi Analysi	t1.o \ ticExpansionInitialize.o \ RefineRegion.o \ MustRefineParticlesRefineToLevel.o \ riter.o \ isBaseClass.o \ isBaseClass_HDF5Utils.o \
OBJS_	acml_st Adiabat Adjust Adjust AMRH5w Analysi Analysi arccost	tl.o \ ticExpansionInitialize.o \ RefineRegion.o \ MustRefineParticlesRefineToLevel.o \ riter.o \ isBaseClass.o \ isBaseClass_HDF5Utils.o \ h.o \
OBJS_	acml_st Adiabat Adjust Adjust AMRH5w Analysi Analysi arccost arcsint	tl.o \ ticExpansionInitialize.o \ RefineRegion.o \ MustRefineParticlesRefineToLevel.o \ riter.o \ isBaseClass.o \ isBaseClass_HDF5Utils.o \ 1.o \
OBJS_	acml_st Adiabat Adjust Adjust AMRH5w Analysi Analysi arccost arcsin Assign	ticExpansionInitialize.o \ RefineRegion.o \ MustRefineParticlesRefineToLevel.o \ riter.o \ isBaseClass.o \ isBaseClass_HDF5Utils.o \ h.o \ h.o \
OBJS_	acml_st Adiabat Adjust Adjust Amalysi Analysi arccost arcsin Assign auto_st	t1.o \ ticExpansionInitialize.o \ RefineRegion.o \ MustRefineParticlesRefineToLevel.o \ riter.o \ isBaseClass.o \ isBaseClass_HDF5Utils.o \ h.o \ h.o \ h.o \ h.o \ how_compile_options.o \
OBJS_	acml_st Adiabat Adjust Adjust Analysi Analysi arccost arcsin Assign auto_st	ticExpansionInitialize.o \ RefineRegion.o \ MustRefineParticlesRefineToLevel.o \ riter.o \ isBaseClass.o \ isBaseClass_HDF5Utils.o \ h.o \ h.o \

(3) add to Make.config.objects

```
MakeFieldConservative.o\
MemoryAllocationRoutines.o \
MemoryPoolRoutines.o \
MersenneTwister.o \
mg_calc_defect.o \
mg_prolong2.o \
mg_prolong.o ∖
mg_relax.o ∖
mg_restrict.o ∖
mkl_st1.o ∖
Mpich_V1_Dims_create.o ∖
multi_cool.o \
MultigridSolver.o ∖
mused.o \
NestedCosmologySimulationInitialize.o \
                                                  add ~ line 663
NewRotatingCylinderInitialize.o
ngpinterp.o 🔪
ngp_deposit.o ∖
NohInitialize.o \
nr_1d.o \
nr_2d.o \
nr_3d.o \
nr_st1.o \
NullProblem.o \
OneZoneFreefallTestInitialize.o \
OutputAsParticleData.o \
OutputCoolingTimeOnly.o \
OutputFromEvolveLevel.o\
OutputLevelInformation.o \
OutputPotentialFieldOnlv.o \
```

Make.config.objects

(3) add to Make.config.objects

Grid_InterpolateStarParticlesToGrid.o \ Grid_KHInitializeGrid.o ∖ Grid_MagneticFieldResetter.o ∖ Grid_MirrorStarParticles.o ∖ Grid_MoveAllParticles.o ∖ Grid_MoveAllStars.o \ Grid_MoveParticlesF0F.o ∖ Grid_MoveSubaridParticlesFast.o ∖ Grid_MoveSubgridParticles.o ∖ Grid_MoveSubgridStars.o ∖ Grid_MultiSpeciesHandler.o \ Grid NestedCosmologySimulationInitializeGrid.o add \sim line 484 Grid_NewRotatingCylinderInitializeGrid.o V Grid_NohInitializeGrid.o \ Grid_OneZoneFreefallTestInitializeGrid.o \ Grid_OutputAsParticleData.o ∖ Grid_OutputStarParticleInformation.o \ Grid_ParticleSplitter.o ∖ Grid_PoissonSolver.o Grid_PoissonSolverCGA.o Grid_PoissonSolverTestInitializeGrid.o \ Grid_PrepareBoundaryFluxes.o ∖ Grid_PrepareFFT.o ∖ Grid_PrepareGreensFunction.o ∖ Grid_PrepareGridDerivedQuantities.o \ Grid_PrepareGrid.o ∖ Grid_PreparePeriodicGreensFunction.o ∖ Grid_PreparePotentialField.o ∖ Grid_PrepareRandomForcingNormalization.o ∖ Grid_PressurelessCollapseInitialize.o \

Make.config.objects

Let's run!

> make

> cd

- > mkdir RotCylinder
- > cd RotCylinder
- > cp ~/enzo-stable/src/enzo/NewRotatingCylinder.enzo .

> ~/enzo-stable/src/enzo/enzo.exe -d NewRotatingCylinder.enzo

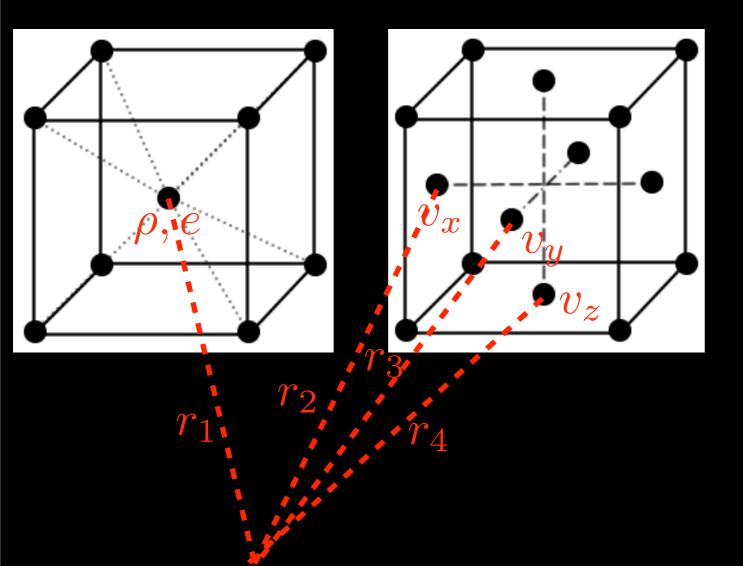
Make the 2 new files (or copy from another test problem): MyProblemInitialize.C Grid_MyProblemInitializeGrid.C

Add prototype and call for non-Grid initialization routine in InitializeNew (make sure it has a unique ProblemType #).

/src/enzo/InitializeNew.C

Add definition of Grid initialization routine to Grid.h /src/enzo/Grid.h

Add the 2 new files to Make.config.objects (so they get compiled) /src/enzo/Make.config.objects


Let's try making a change!

We'll make a rotating sphere instead

Points to watch

<u>Using Zeus</u> (HydroMethod = 2)

Zeus uses a face-centered velocity

/* Loop over dims if using Zeus (since vel's face-centered). */

for (dim = 0; dim < 1+(HydroMethod == Zeus_Hydro ? GridRank : 0); dim++) {

/* Compute position. */

xpos = x-DiskPosition[0] (dim == 1 ? 0.5*CellWidth[0][0] : 0.0);
ypos = y-DiskPosition[1] (dim == 2 ? 0.5*CellWidth[1][0] : 0.0);
zpos = z-DiskPosition[2] (dim == 3 ? 0.5*CellWidth[2][0] : 0.0);

/* Compute velocty: L x r_perp. */

Velocity[2] = DiskVelocityMag*(AngularMomentum[0]*xhat[1] -AngularMomentum[1]*xhat[0]);

It also uses internal energy, not total energy

Points to watch

<u>Energy</u>

BaryonField[TENum] is energy/mass

Particle Mass

ParticleMass[i] is particle mass / cell volume

GravitationalConstant

GravitationalConstant = 4 pi G

Must be in code units if SelfGravity = I