

Cosmology Simulations with Enzo

John Wise (Georgia Tech) Enzo Workshop 北海道大学 – 17 May 2012

Outline

Based on the simulation setup of Abel, Wise, & Bryan (2007), *The HII Region of a Primordial Star*

- Introduction to unigrid cosmology simulations
- Introduction to nested grid cosmology simulations
- Using different non-equilibrium chemistry models
- Including Population III star formation and feedback

Unigrid Initial Conditions

- Two programs are provided to generate cosmology initial conditions: **inits** (src/inits) or **mpgrafic** (src/mpgrafic)
- This tutorial will cover how to set up initial conditions with mpgrafic.
- 7 initial condition files in HDF5 file format
 - Baryon Density: 1 x N x N x N
 - (x,y,z) Baryon Velocity: 1 x N x N x N
 - (x,y,z) Particle Velocity: 1 x N x N x N

- MPI parallel version of Bertschinger's grafic (Prunet et al. 2008; RAMSES)
- Adapted to write data format suitable for enzo (parallel HDF5)
- Calculates nested grid simulations by brute force
 - Create the data for the entire box at the finest resolution, then deresolve the volume outside the nested grids.

- MPI parallel version of Bertschinger's grafic (Prunet et al. 2008; RAMSES)
- Adapted to write data format suitable for enzo (parallel HDF5)
- Calculates nested grid simulations by brute force
 - Create the data for the entire box at the finest resolution, then deresolve the volume outside the nested grids.

- Requirements:
 - Parallel HDF5

./configure --enable-parallel --enable-fortran
make install

• Configure mpgrafic and degraf. No need to make; the script will make it later.

Initial Conditions Parameters

- Cosmology Parameters: box size, Hubble constant, mass-energy fractions $(\Omega_{\Lambda}, \Omega_{m}, \Omega_{b})$. Note: initial redshift will be determined automatically
- Power spectrum parameters: power spectrum type, σ_8 , random seed
 - Using the same random seed with different grid dimensions will result in the same realization
 - Using the same random seed with a different box size will result in a very similar result.
- Grid parameters: resolution
- See <u>http://enzo-project.org/doc/user_guide/</u> <u>CosmologicalInitialConditions.html#using-mpgrafic</u> for more details

Initial Conditions Parameters – Grid parameters

src/mpgrafic/make_ic.py

#	PARAMETERS	
#enzo	= True	# On for Enzo ICs
nprocs	= 16	# Number of processors
boxsize	= 17.831669	<pre># Boxsize in comoving Mpc (not Mpc/h)</pre>
resolution	= 512	# Topgrid resolution
n_levels	= 0	# Number of nested grids
inner_width	= 0.4375	# If using nested grids, width of finest grid
buffer_cells	= 4	# Number of cells between refined grids
seed	= 200905130	# Random seed (MUST be 9-digits)
name	= "LAE512"	
center = [0.	5, 0.5, 0.5]	<pre># Center of interest (no shift = 0.5,0.5,0.5)</pre>
#conton - FO	7717 0 0405 0 343	57 # Contan of interact (no chift - 0 5 0 5 0 5)

#center = [0.7717, 0.0405, 0.3435] # Center of interest (no shift = 0.5,0.5,0.5)
LargeScaleCorrection = False # If using noise from a low-resolution run
LargeScaleFile = "200902187_64.dat" # That noise file
OneDimPerFile = True # Write one dimension per file

#		COSMOLOGY PARAMETERS
omega_m	= 0.279	# Omega matter
omega_v	= 0.721	# Omega lambda

Thursday, 17 May 12

Initial Conditions Parameters – Grid parameters

src/mpgrafic/make_ic.py

#	PARAMETERS	
#enzo	= True	# On for Enzo ICs
nprocs	= 16	# Number of processors
boxsize	= 17.831669	<pre># Boxsize in comoving Mpc (not Mpc/h)</pre>
resolution	= 512	# Topgrid resolution
n_levels	= 0	# Number of nested grids
inner_width	= 0.4375	# If using nested grids, width of finest grid
buffer_cells	= 4	# Number of cells between refined grids
seed	= 200905130	# Random seed (MUST be 9-digits)
name	= "LAE512"	

center = [0.5, 0.5, 0.5] # Center of interest (no shift = 0.5,0.5,0.5)
#center = [0.7717, 0.0405, 0.3435] # Center of interest (no shift = 0.5,0.5,0.5)
LargeScaleCorrection = False # If using noise from a low-resolution run
LargeScaleFile = "200902187_64.dat" # That noise file
OneDimPerFile = True # Write one dimension per file

#			
omega_m	= 0.279		
omega_v	= 0.721		

Thursday, 17 May 12

Initial Conditions Parameters – Power spectrum parameters

#		COSMOLOGY	PARAMETERS
omega_m	= 0.279		# Omega matter
omega_v	= 0.721		# Omega lambda
omega_b	= 0.0462		# Omega baryon
hØ	= 70.1		# Hubble constant
sigma8	= 0.817		# sigma_8
n_plawslope	= 0.960		# Slope of power spectrum

src/mpgrafic/make_ic.py

Create the initial conditions!

• python make_ic.py

O O O Termir	nal — 80×25 — ೫4		
Reading random numbers used in ic4 f Random numbers generated with isee Mean value of the white noise box = Will be removed	rom 201006270_64.dat ed= 201006270 9.2317221132598090	:)1E-004	E
Standard deviation of the white nois	se box = 1.0009383	538562948	
Will be factored out so that input s	stdev=1		
ic4 white noise: chisq, dof, nu= 2	262144.03	262143	2.012070
27E-03	_	-	
Statistics of ic4 for idim, itide=	2	0	
Mean sigma, sampled sigma, maximu	um= 8.81795511E-02	6.73498958E-02	0.24955
654			
Reading random numbers used in ic4 f Random numbers generated with isee	From 201006270_64.dat ed= 201006270	:	
Mean value of the white noise box =	9.2317221132598090	1E-004	
Will be removed			
Standard deviation of the white nois	se box = 1.0009383	538562948	
Will be factored out so that input s	stdev=1		
ic4 white noise: chisq, dof, nu= 2	262144.03	262143	2.012070
27E-03			
Statistics of ic4 for idim, itide=	3	0	
Mean sigma, sampled sigma, maximu	um= 8.81795511E-02	0.11716350	0.37858
123			
<pre>mpgrafic% ls data/WS_Reion/</pre>			
GridDensity GridVelocities Particle	Velocities		

Initial redshift

- grafic determines the initial redshift by the density fluctuation amplitude.
- The default is 0.1.
- Smaller sigma \rightarrow Higher redshift.
 - Tip: Don't go to an extremely low amplitude. Enzo's gravity solver doesn't work well with small perturbations in the particles.
- Unfortunately, it doesn't report the initial redshift.

Set up Enzo parameter file

See run/Cosmology/Hydro/AMRCosmology/AMRCosmology.enzo

```
000
                                 Terminal — 85×49 — #4
#
  AMR PROBLEM DEFINITION FILE: Cosmology Simulation (amr version)
#
   define problem
#
                            = 30
ProblemType
                                      // cosmology simulation
TopGridRank
                            = 3
TopGridDimensions = 16 16 16
SelfGravity
                        = 1 // gravity on
TopGridGravityBoundary = 0 // Periodic BC for gravity
LeftFaceBoundaryCondition = 3 3 3 // same for fluid
RightFaceBoundaryCondition = 3 3 3
#
   problem parameters
CosmologySimulationOmegaBaryonNow
                                         = 0.04
CosmologySimulationOmegaCDMNow
                                         = 0.26
CosmologySimulationDensityName
                                         = GridDensity
CosmologySimulationVelocity1Name
                                         = GridVelocities
```

LeftFaceBoundaryCondition	=	3	3	3	11	same	for	fluid	
RightFaceBoundaryCondition	=	3	3	3					
ш									

= 1000

#Set up rameters parameter file

CosmologySimulationOmegaBa CosmologySimulationOmegaCD CosmologySimulationDensity CosmologySimulationVelocity	ryonNow MNow Namedro/A y1Name	= 0.04 = 0.26 MR=CGridDensity = GridVelociti	modify these parameters to be
CosmologySimulationVelocity	y2Name	= GridVelociti	es
CosmologySimulationParticle	ePositionNa	me = ParticlePosi	es tions
CosmologySimulationParticle	eVelocityNa	me = ParticleVelo	cities
# # d=C:1			
# define cosmology parame	cers		
ComovingCoordinates	= 1	// Expansion ON	
CosmologyOmegaMatterNow	= 0.3		
CosmologyOmegaLambdaNow	= 0.7		
CosmologyHubbleConstantNow	= 0.5	// in 100 km/s/Mp	c
CosmologyComovingBoxSize	= 16.0	// in Mpc/h	
CosmologyMaxExpansionRate	= 0.015	// maximum allowe	d delta(a)/a
CosmologyInitialRedshift	= 30	//	
CosmologyFinalRedshift	= 0	//	
GravitationalConstant	= 1	// this must be t	rue for cosmology
#			
<pre># set I/O and stop/start</pre>	parameters		
#			

// stop after this many cycles

with mpgrafic, must

StopCycle Thursday, 17 May 12 LeftFaceBoundaryCondition = 3 3 3 // same for fluid RightFaceBoundaryCondition = 3 3 3

Set up Enzo parameter file

modify these parameters to be problem parameters CosmologySimulationOmegaBaryonNow = 0.04CosmologySimulationOmegaCDMNow = 0.26 CosmologySimulationDensityName = GridDensity CosmologySimulationVelocity1Name = GridVelocities_x CosmologySimulationVelocity2Name = GridVelocities_y CosmologySimulationVelocity3Name = GridVelocities_z #COSING LOGYS LINA LACLOI AI LLELEFUJLELUHHUING -CosmologySimulationParticleVelocity1Name = ParticleVelocities_x CosmologySimulationParticleVelocity2Name = ParticleVelocities_y CosmologySimulationParticleVelocity1Name = ParticleVelocities_z CosmologySimulationCalculatePositions

CosmologyInitialRedshift = 30 // CosmologyFinalRedshift = 0 // GravitationalConstant = 1 // this must be true for cosmology # # set I/O and stop/start parameters #

1000

Thursday, 17 May 12

StopCvcle

// stop after this many cycles

with *mpgrafic*, must

Run the simulation

- Move parameter file and initial conditions into the same directory
- Run enzo!

AMRCosmology% ./enzo.exe AMRCosmology.enzo

Nested Grid Cosmology Simulations

- aka Zoom-in calculations
- 1. *n*-Body Simulation
- 2. Locate region of interest, e.g. most massive halo
- 3. Generate nested grid initial conditions
- 4. Run simulation!

n-body Simulation

- Usually run at the same resolution as the production level-0 resolution
- Create initial conditions with *inits* or *mpgrafic*
- Key parameters

#		
CosmologySimulationOmegaBaryonNow	= 0.0	
CosmologySimulationOmegaCDMNow	= 0.266	
#CosmologySimulationInitialTemperature	= 200	
#CosmologySimulationDensityName	= GridDensity	
#CosmologySimulationVelocity1Name	= GridVelocities	InlineHaloFinder = 1
#CosmologySimulationVelocity2Name	= GridVelocities	HaloFinder(vcleSkin =
#CosmologySimulationVelocity3Name	= GridVelocities	nator that cycleskip -
CosmologySimulationParticlePositionName	e = ParticlePositions	
CosmologySimulationParticleVelocityName	e = ParticleVelocities	
CosmologySimulationCalculatePositions	= 0	
CosmologySimulationNumberOfInitialGrids	i = 1	
RefineBy = 2	// refinement factor	
		Come of Come of the second sec

inement

#CellFlaggingMethod	= 2 4 6 // use baryon mass for re
CellFlaggingMethod	= 4 // use DM mass for refineme
MinimumEfficiency	= 0.4 // fraction efficiency

```
000
                                 Terminal — 80×30 — #3
         = 15.921139
# Time
# Redshift = 12.802003
# Number of halos = 83
#
# Column 1. Center of mass (x)
# Column 2. Center of mass (y)
# Column 3. Center of mass (z)
# Column 4. Halo number
# Column 5. Number of particles
# Column 6. Halo mass [solar masses]
# Column 7. Virial mass [solar masses]
# Column 8. Stellar mass [solar masses]
# Column 9. Virial radius (r200) [kpc]
# Column 10. Mean x-velocity [km/s]
# Column 11. Mean y-velocity [km/s]
# Column 12. Mean z-velocity [km/s]
# Column 13. Velocity dispersion [km/s]
# Column 14. Mean x-angular momentum [Mpc * km/s]
# Column 15. Mean y-angular momentum [Mpc * km/s]
# Column 16. Mean z-angular momentum [Mpc * km/s]
# Column 17. Spin parameter
#
# datavar lines are for partiview. Ignore them if you're not partiview.
datavar 0 halo_number
datavar 1 number_of_particles
datavar 2 halo_mass
datavar 3 virial_mass
datavar 4 stellar_mass
groups_00137.dat lines 1-29/122 4%
```

Thursday, 17 May 12

● ● ● ● ■ Terminal — 80×30 — ₩3	
datavar 0 halo_number	E N
datavar 1 number_of_particles	
datavar 2 halo_mass	
datavar 3 virial_mass	
datavar 4 stellar_mass	
datavar 5 virial_radius	
datavar 6 x_velocity	
datavar 7 y_velocity	
datavar 8 z_velocity	
datavar 9 velocity_dispersion	
datavar 10 x_angular_momentum	
datavar 11 y_angular_momentum	
datavar 12 z_angular_momentum	
datavar 13 spin Position Mass	
0.76364088 0.29754913 0.37248853 0 2060 571700.88	
447925.16 0 0.11323795 0.84548277 -0.41380891 1.0349354	
5.341588 2.408008e-05 3.4065459e-05 -6.1198812e-06 0.11691254	
0.46177065 0.61586523 0.6905852 1 1390 385758.56	
372992.47 0 0.10630372 2.0898418 0.23426482 -1.659736	4
.6082692 5.5966311e-06 1.264129e-05 -3.7420041e-06 0.041144241	
0.84373128 0.67770523 0.27474043 2 415 115172.2	
70213.453 0 0.060892154 -0.90891731 -0.64614326 2.0012767	2
.8843138 2.717258e-06 -1.8763769e-06 -7.576411e-06 0.078942753	
0.51242203 0.62618536 0.67746228 3 372 103238.98	
95745.844 0 0.067207284 -0.48392525 0.49669054 -2.3942778	2
.9666159 7.2602943e-06 3.2799553e-06 -2.7749318e-06 0.060778547	
0.77068067 0.30860633 0.33854923 4 330 91583	
81314.617 0 0.06338729 -1.6947181 -0.76077771 3.8264091	2
groups_00137.dat lines 25-44/122 11%	Y

Nested Grid Initial Conditions with mpgrafic

n -	
CosmologySimulationOmegaBaryonNow	= 0.0
CosmologySimulationOmegaCDMNow	= 0.266
#CosmologySimulationInitialTemperature	= 200
#CosmologySimulationDensityName	= GridDensity
<pre>#CosmologySimulationVelocity1Name</pre>	= GridVelocities
#CosmologySimulationVelocity2Name	= GridVelocities
#CosmologySimulationVelocity3Name	= GridVelocities
CosmologySimulationParticlePositionName	= ParticlePositions
CosmologySimulationParticleVelocityName	= ParticleVelocities
CosmologySimulationCalculatePositions	= 1
CosmologySimulationNumberOfIni ialGrids	= 1

Set to one when using with mpgrafic.

Moves the particle position calculation into enzo.

Not necessary to run ring for large simulations!

make_ic.py: Parameters

#	PARA	METERS
#enzo	= True	# On for Enzo ICs
nprocs	= 16	# Number of processors
boxsize	= 17.831669	<pre># Boxsize in comoving Mpc (not Mpc/h)</pre>
resolution	= 512	# Topgrid resolution
n_levels	= 2	# Number of nested grids
inner_width	= 0.4375	<pre># If using nested grids, width of finest grid</pre>
buffer_cells	= 2	<pre># Number of cells between refined grids</pre>
seed	= 200905130	<pre># Random seed (MUST be 9-digits)</pre>
name	= "LAE512"	

center = [0.5, 0.5, 0.5] # Center of interest (no shift = 0.5,0.5,0.5)
#center = [0.7717, 0.0405, 0.3435] # Center of interest (no shift = 0.5,0.5,0.5)
LargeScaleCorrection = False # If using noise from a low-resolution run
LargeScaleFile = "200902187_64.dat" # That noise file
OneDimPerFile = True # Write one dimension per file

#			COSMOLOGY	PAR	AMETERS
omega_m	=	0.279		#	Omega matter
omega_v	=	0.721		#	Omega lambda
omega_b	=	0.0462		#	Omega baryon
h0	-	70.1		#	Hubble constant
sigma8	=	0.817		#	sigma_8
n_plawslope	=	0.960		#	Slope of power spectrum

make_ic.py: Parameters

nprocs		16		
boxsize		17.831669		
		512		
n_levels	=	2	#	Number of nested grids
inner_width	=	0.4375	#	If using nested grids, width of finest grid
buffer_cells	=	2	#	Number of cells between refined grids
seed	=	200905130	#	Random seed (MUST be 9-digits)
name	=	"LAE512"		

center = [0.5, 0.5, 0.5] # Center of interest (no shift = 0.5,0.5,0.5)
#center = [0.7717, 0.0405, 0.3435] # Center of interest (no shift = 0.5,0.5,0.5)
LargeScaleCorrection = False # If using noise from a low-resolution run
LargeScaleFile = "200902187_64.dat" # That noise file
OneDimPerFile = True # Write one dimension per file

#		COSMOLOGY PARAMETERS
omega_m	= 0.279	
omega_v		
omega_b	= 0.0462	
h0	= 70.1	
sigma8	= 0.817	
n_plawslope	= 0.960	

$buffer_cells = 2$

make_ic.py: Parameters

nprocs		16		
boxsize		17.831669		
		512		
n_levels	=	2	#	Number of nested grids
inner_width	=	0.4375	#	If using nested grids, width of finest grid
buffer_cells	=	2	#	Number of cells between refined grids
seed	=	200905130	#	Random seed (MUST be 9-digits)
name	=	"LAE512"		

center = [0.5, 0.5, 0.5] # Center of interest (no shift = 0.5,0.5,0.5)
#center = [0.7717, 0.0405, 0.3435] # Center of interest (no shift = 0.5,0.5,0.5)
LargeScaleCorrection = False # If using noise from a low-resolution run
LargeScaleFile = "200902187_64.dat" # That noise file
OneDimPerFile = True # Write one dimension per file

#		COSMOLOGY PARAMETERS
omega_m	= 0.279	
omega_v		
omega_b	= 0.0462	
h0	= 70.1	
sigma8	= 0.817	
n_plawslope	= 0.960	

Nested Grid Initial Conditions with mpgrafic

•python make_ic.py

O O O Termina	l−80×25− %4		
Reading random numbers used in ic4 fr Random numbers generated with iseed Mean value of the white noise box = Will be removed	om 201006270_64.da = 201006270 9.231722113259809	it 001E-004	E
Standard deviation of the white noise	box = 1.000938	3538562948	
Will be factored out so that input st	:dev=1	2624.42	2 012070
1C4 white noise: chisq, dof, nu= 26	02144.03	262143	2.012070
Statistics of icd for idim itide-	2	0	
Mean sigma, sampled sigma, maximum	= 8.81795511F-02	6.73498958F-02	0.24955
654	- 0.011333112 02	0.134303302 02	0.21555
Reading random numbers used in ic4 fr Random numbers generated with iseed Mean value of the white noise box = Will be removed	om 201006270_64.da = 201006270 9.231722113259809	1t 001E-004	
Standard deviation of the white noise Will be factored out so that input st	box = 1.000938 dev=1	3538562948	
ic4 white noise: chisq, dof, nu= 26	2144.03	262143	2.012070
27E-03			
Statistics of ic4 for idim, itide=	3	0	
Mean sigma, sampled sigma, maximum	⊨ 8.81795511E-02	0.11716350	0.37858
mpgratics is acta/ws_keion/	alocities		
mpgrafic%	elocities		

Unigrid Smoothed DM Density Slice

1 Nested Grid

Setting up the Nested Grid Parameter File

Auto-adjusting refine region

- Automatically changes the refine region to only include high-resolution particles.
- Particles from low-resolution initial regions might dominate the potential in halos and cause artificial collapse.

Auto-adjusting refine region

Displaying low-resolution particles inside refine region

Overdensity criteria

- Very important: Must divide the baryon and DM mass refinement criteria by a factor of 8ⁿ, where n := maximum initial level
- e.g. Refine on an overdensity of 3 with 2 initial grids \rightarrow 3.0/64 = 0.046875
- If not done, the hierarchy will remain under-resolved, compared with the desired results.

```
set grid refinement parameters
#
 #
StaticHierarchy = 0
                                  // dynamic hierarchy
MaximumRefinementLevel
                          = 8
MaximumGravityRefinementLevel
                               = 8
MaximumParticleRefinementLevel = 8
                           = 2 // refinement factor
RefineBy
CellFlaggingMethod = 2 4 6 // use baryon mass for refinement
#CellFlaggingMethod = 4 // use DM mass for refinement
MinimumEfficiency = 0.3 // fraction efficiency
MinimumOverDensityForRefinement = 0.5 0.5 // times the initial density refers to top g?
rid: divide by 8 for each additional level
MinimumMassForRefinementLevelExponent = -0.2 0.0
```

Different chemistry and cooling models

- **MultiSpecies == 0:** Equation of state with an adiabatic index Y
 - RadiativeCooling == 1: Cooling from a tabulated cooling curve (copy input/cool_rates.in to working directory)

Non-equilibrium chemistry

- MultiSpecies == 1: 6-species (H, H⁺, He, He⁺, He⁺⁺, e⁻)
- MultiSpecies == 2: 9-species (H, H⁺, He, He⁺, He⁺⁺, e⁻, H⁻, H₂, H₂⁺); i.e. +molecular hydrogen cooling
- MultiSpecies == 3: 12-species (H, H⁺, He, He⁺, He⁺⁺, e⁻, H⁻, H₂, H₂⁺, D, D⁺, HD); +HD cooling

Different chemistry and cooling models

- MetalCooling == 1: Tabulated cooling table from Glover & Jappsen (2007) & Sutherland & Dopita (1993) – input/metal_cool.dat.
 - T < 10⁴ K: fine-structure metal-line cooling
 - T > 10⁴ K: collisional ionization equilibrium
- **MetalCooling == 2:** Explicitly calculated metal cooling rates (Cen)
- MetalCooling == 3: Tabulated cooling table from CLOUDY (Smith et al. 2008)

on conival: cp -r ~guest12/AWB07/

problem parameters CosmologySimulationOmegaBaryonNow **0**.0441 CosmologySimulationOmegaCDMNow = 0.2139#CosmologySimulationInitialTemperature = 300CosmologySimulationDensityName = GridDensity CosmologySimulationVelocity1Name = GridVelocities CosmologySimulationVelocity2Name = GridVelocities CosmologySimulationVelocity3Name = GridVelocities CosmologySimulationParticleVelocityName = ParticleVelocities CosmologySimulationParticlePositionName = ParticlePositions CosmologySimulationCalculatePositions = 0 CosmologySimulationNumberOfInitialGrids = 2 CosmologySimulationGridDimension[1] = 96 96 96 CosmologySimulationGridLeftEdge[1] = 0.3125 0.3125 0.3125 CosmologySimulationGridRightEdge[1] = 0.6875 0.6875 0.6875 CosmologySimulationGridLevel[1] = 1

#							
# set hydro parameters							
#							
Gamma	= 1.6667						
PPMDiffusionParameter	= 0 // diffus	sion off					
DualEnergyFormalism	= 1 // use to	otal & internal energy					
InterpolationMethod	= 1 // SecondOr	derA					
FluxCorrection	FluxCorrection = 1						
ConservativeInterpolation = 1							
CourantSafetyNumber = 0.5							
ParticleCourantSafetyNumber = 0.8							
RadiativeCooling	= 1	H Ha Ha non-aquilibrium chamistry					
MultiSpecies = 2 = 2							
UseMinimumPressureSupp	ort = 0						
RefineByJeansLengthSafetyFactor = 16.0 Resolve local Jeans length by 16 cells							

2 more parameters for large nested grid runs

- i.e. >256³ nested grids
- ParallelRootGridI0 = 1: Root grids are tiled before I/O, and each processor reads/writes their own tile
- PartitionNestedGrids = 1: Same thing as above but for nested grids

You should now know how to:

- Create cosmological unigrid and nested grid initial conditions with *mpgrafic*.
 For more, see
 - <u>http://enzo-project.org/doc/user_guide/</u> <u>CosmologicalInitialConditions.html#using-mpgrafic</u>
- Run cosmological nested grid runs (n-Body and n-Body + gas)
- Use radiative cooling (with cooling curves) and non-equilibrium chemistry
- Use Population III star particles with ray-tracing for radiation feedback