
2
Numerical methods:

simulations with smoothed particle hydrodynamics

“...and one has to resort to the indignity of numerical simulations to settle even the
simplest questions... ”
– Philip Anderson, Nobel Lecture, 1977

2.1 Introduction

In order to construct synthetic Galactic observations we first need to generate the physical con-
ditions from which to build them. Numerical simulations presented in this thesis are performed
using the smoothed particle hydrodynamical technique, or SPH, where the fluid is decomposed
into discretised packets, or particles. This chapter presents an overview of the SPH method and
codes used throughout this thesis. We begin with a discussion of the basic principles, including
some simple tests of the codes, in Section 2.2. We then discuss the additions to allow for the study
of ISM scale physics in Section 2.3. This includes additions to the standard energy evolution to
allow for ISM heating and cooling, and the various chemical processes needed to track the Galac-
tic molecular content. Two existing SPH codes are used in this study, the structure of each and the
developments made for the work in this thesis are discussed in Section 2.2.12.

These codes and techniques will be utilised in simulations using both fixed analytic stellar
potentials and live stellar systems, presented in Chapters 3, 4 and 5.
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2.2 Smoothed Particle Hydrodynamics

The problem of simulating fluid motion is by no means a new one. Clearly the fluid cannot be
simulated on a point mass level, molecule-by-molecule, so some large scale discretisation must be
used. The two main techniques are to either evolve the flow of packets of the fluid in a Lagrangian
prescription, or to measure the flow of fluid though a static or adaptive grid in a Eulerian sense.
These methods include Eulerian grid based method such as adaptive mesh refinement, or AMR,
codes (e.g. flash, Fryxell et al. 2000; ramses, Teyssier 2002; enzo, Bryan et al. 2014), Lagrangian
particle based methods such as smoothed particle hydrodynamics, or SPH, codes (e.g. gadget,
Springel et al. 2001; gasoline, Wadsley et al. 2004; seren, Hubber et al. 2011) or some intermix of
the two such as moving mesh codes (e.g. arepo: Springel 2010a). While each has its own merits,
no clear consensus has been reached as to whether there is a single method that outstrips the others
in every regard, though numerous studies have focused on comparing the di↵erent techniques (e.g.
Agertz et al. 2007, Tasker et al. 2008, Price & Federrath 2010), with a large number specifically
focussing on comparisons in a cosmological context (e.g. Frenk et al. 1999, Thacker et al. 2000,
O’Shea et al. 2005).

In this thesis simulations are performed using the SPH method, specifically using the codes
phantom (Price & Federrath 2010) and sphng (Bate et al. 1995) the details of which will be
discussed in greater detail later in this chapter. The SPH method was first formulated by Lucy
(1977) and Gingold & Monaghan (1977). The crux of the method is to discretise a fluid into a finite
number of mass elements with variable density, i.e. volume. The density of a particle is calculated
by interpolation between neighbouring particles, normalised by some smoothing function known
as the smoothing kernel function, W(r), that decreases in magnitude with increasing distance from
the particle of interest.

In the 40 years since its conception the SPH method has evolved considerably. While today
it is arguably most well know for its application in the field of cosmology it has been applied to
numerous media both in and out of astrophysics (e.g. the study of accretion discs, planet and star
formation). As such there are numerous additional physics that have been added to study di↵erent
problems, including magnetic fields, radiative transfer and relativity. Further information on these
improvements, as well as the basics of SPH can be found in the reviews of Price (2012a), Rosswog
(2009), Monaghan (1992, 2005) and (Springel 2010b). As with any numerical method, there are
key benefits and detriments of SPH. Some, but certainly not all, of these are highlighted below in
particular in comparison to grid-based methods.

Advantages

• SPH is usually boundless, so no matter is lost or forced back into the simulation at domain
boundaries thereby inherently conserving the mass of the system.

• The code spends its time evolving only the regions with a non-zero density field, so no time
is wasted modelling empty space as in grid codes.

• The adaptive resolution (both spatially and temporally) are relatively easy to implement, i.e.
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no need to re-create/adapt meshes as in grid-based codes.

• The fluid evolution history is intrinsically simple to trace due to the particle-like nature. This
would require the inclusion of tracer particles in grid-based codes to follow the fluid flow.

• SPH is comparatively simple and easy to model complex physics and geometries in 3D, due
to free/moving material boundaries.

• Particle nature makes coupling to N-body or self-gravity physics relatively straight-forward.

• The distribution of mass between particles ensures exact conservation of mass, as the mass
of each particle is constant throughout time.

Disadvantages

• Need to build and constantly update neighbour lists (by link-lists or binary trees) in order to
evaluate particle summations.

• The initial conditions can be influential on the eventual outcome. Need to decide on whether
to set particles on a cubic, hexagonal or random lattice arrangement initially.

• Resolution is limited by particle number, which is fixed at the start of the simulation,
whereas in theory a grid can be sub-divided indefinitely.

• Radiative transfer and magnetohydrodynamics can be more di�cult to implement than the
cell structured nature of grid-based codes.

2.2.1 Equations of fluid dynamics

Throughout this chapter we will be referring to numerous standard formulae to derive and explain
the SPH equations. We include these here briefly for reference before continuing. SPH is a
Lagrangian fluid formulation by design, where the Lagrangian itself takes the classical form

L = T � V =
Z  

1
2
⇢v2 � ⇢u

!
d~r, (2.1)

which is simply the di↵erence between the kinetic and thermal potential energy, T and V respect-
fully (neglecting gravity for now), where ⇢, u, v and ~r are the density, internal energy, velocity
and position of a fluid element. We can minimise the action of the Lagrangian to give the Euler-
Lagrange equations of fluid dynamics

@L
@~r
� d

dt
@L
@~v
= 0, (2.2)

which can be used with an appropriate Lagrangian to obtain the equations of motion (EoM) of the
fluid system. We will also be making use of the material, or Lagrangian, derivative which is given
by

D
Dt
=
@

@t
+ ~v ⇧ ~r, (2.3)
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where the first derivative is the local rate of change (i.e. the Eulerian derivative), and the second
the convective derivative. We will also utilise the Navier-Stokes equations for fluid flow (a.k.a. the
Euler equations) given by

D~v
Dt
+
~rP
⇢
+ ~fvisc + ~fext = 0, (2.4)

where ~fvisc contains all the physical viscosity information and may also contain extra magneto-
hydrodynamical (MHD) terms. For gravitational external forces ~fext = �~r�, where � is the
external potential. In the work presented here � comes from galactic potentials we impose, which
are related to the density distribution by Poisson’s equation, r2� = ⇢ext(~r)4⇡G. The material
derivative is e↵ectively Newton’s second law for a fluid. Built into any numerical fluid simulation
should be the continuity equation, which ensures mass conservation in the system

@⇢

@t
+ ~r ⇧ (⇢~v) =

@⇢

@t
+ ~v ⇧ ~r⇢ + ⇢~r ⇧ ~v = D⇢

Dt
+ ⇢~r ⇧ ~v = 0. (2.5)

And finally we will also use the first law of thermodynamics. For an adiabatic (dQ = 0) equation
of state (EoS) we have dU = dQ � PdV = Pd⇢/⇢2, giving the rate of change of internal energy as

Du
Dt
=

P
⇢2

D⇢
Dt
. (2.6)

where specific internal energy is u = U/m. Between these formulae we have a framework to evolve
a fluid system over time, tracing changes in velocity, internal energy and position (d~r/dt = ~v) while
maintaining mass conservation by satisfying Equation 2.5. We can also calculate the total energy
simply by the addition of the internal to the kinetic energy, e = u + v2/2.

2.2.2 The SPH kernel

The kernel function is a key parameter of SPH, and defines how much we care about particle
neighbours when calculating fluid properties, akin to a window function. It e↵ectively puts the
“smooth” in SPH, and makes sure particle properties are smoothly interpolated from neighbouring
particles. The kernel is defined by some scale length/smoothing length/kernel support radius, h,
which determines the rate of radial decay. Two basic properties of an appropriate kernel are that it
is correctly normalised Z

W(|~r � ~r 0|, h)d3~r 0 = 1, (2.7)

and that it tends to a delta function as the kernel support radius tends to 0

lim
h!0

W(|~r � ~r 0|, h) = �(~r � ~r 0). (2.8)

The kernel is chosen to be spherically symmetric so that the system is independent of rotation,
and to be only a function of separation, rather than actual particle position. We can first define a
property of the system, A(~r), using the delta function by

A(~r) =
Z

A�(~r � ~r 0)d3~r 0. (2.9)
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We can then approximate this expression with our kernel function to give the integral interpolation
approximation

A(~r) =
Z

A(~r 0)W(|~r � ~r 0|, h)d3~r 0, (2.10)

where the parameter A is integrated over all other fluid elements at positions ~r 0. This would
produce A(~r) exactly when the kernel is the delta function. For practical purposes the above
integral is formulated into a summation over a set of interpolation points throughout the medium,
the SPH particles. This then means we can estimate A for some particle at ~r by a weighted sum of
that same A evaluated at every other particle at ~r 0. We can replace the volume integral for a mass
integral, as in the usual construction of SPH we know the mass of each particle, so that Equation
2.10 becomes

A(~r) =
Z

A(~r 0)
⇢(~r 0)

W(~r � ~r 0, h)⇢(~r 0)d3r0 =
Z

A(~r 0)
⇢(~r 0)

W(~r � ~r 0, h)dm (2.11)

we can then form a discretised version, by a summation interpolation using particles as our inter-
polation points. This gives a sum over b particles at positions ~r 0

A(~r) =
X

b

mb
Ab

⇢b
W(~r � ~rb, h) (2.12)

where m, ⇢ are the particles’ mass and density respectively. These leads to a way of calculating
some property of the system, A, at any given point by summation over discretised fluid elements.
For instance, we can find the density simply by substituting A(~r)! ⇢(~r) to give the standard SPH
density summation equation

⇢(~r) =
X

b

mbW(~r � ~rb, h). (2.13)

In replacing the integral with summation expressions (Equations 2.10 and 2.12) with have intro-
duced some discretisation/sampling error of the order h2 (Monaghan 1992, 2005), which depends
on particle disorder and is reduced by increasing the number of particles (Price 2005). There is
also an error associated with the initial introduction of the integral interpolation Equation 2.10
(Monaghan 2005; Liu & Liu 2010) which is also of order h2, which is reduced by decreasing the
smoothing length (evident by Equation 2.8). This would lead to the conclusion of using a high
number of particles that are well ordered and a kernel with a small smoothing length to reduce er-
rors. However this would increase computational time-scales, requiring a give-and-take approach
between reducing errors and optimising calculation times (Cossins 2010).

By using Equation 2.13 we have the capability to calculate the density of the fluid at any
arbitrary point by summing over the kernels of the neighbouring particles. This is illustrated by the
cartoon in Figure 2.1. We shall show later in this chapter that this approach can be used to calculate
other properties of the system, specifically the forces and internal energies of the particles. But
first we turn our attention to the actual form of the kernel function.

Ideally an appropriate kernel must have several properties, in addition to those of Equations
2.7 and 2.8. The kernel should be “bell-shaped” (Lucy 1977) so that the kernel smoothly decreases
with distance but also flattens near the centre to avoid steep gradients for particles in close proxim-
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Figure 2.1: Simple schematic of how to visualise SPH particles. Density is calculated by summing
over neighbours, with masses weighted by some smoothing kernel, W(r, h), that decays with dis-
tance from the particle of interest. The compact support shown here is 2h, specifically that of the
cubic spline kernel. This cartoon shows particles with individual smoothing lengths so that each
particle has approximately equal neighbours.

ity. The kernel should also be smoothly di↵erentiable (at least singularly) and be an odd function
and � 0 in all space. Given these pre-requisites the simplest choice is a Gaussian kernel function
which has the advantage of being smooth for any order of di↵erentiation (employed by Gingold
& Monaghan 1977). However as it is non-zero at all radii we would require the summation over
all neighbours. Instead we can choose to limit our summation to a kernel of “compact support”,
i.e. one that drops to 0 outside some radius, limiting ourselves to a finite number of particles and
the kernel to a finite volume (e.g. a sphere of radius 2h in Fig. 2.1). A common choice is the
cubic spline (Monaghan & Lattanzio 1985) with compact support inside 2h, used by default in
both phantom and sphng. This kernel takes the form

W(~r, h) =
�(⌫D)

h⌫D

8>>>>><
>>>>>:

1 � 1.5q2 + 0.75q3 0  q < 1
0.25(2 � q)3 1  q < 2
0 2 < q

(2.14)

where q = |r|/h, ⌫D is the number of spatial dimensions and � = (2/3, 10/7⇡, 1/⇡) for 1, 2 and
3D, ensuring the correct normalisation (Equation 2.8). The number of terms can be increased to
form quartic, O(q4) or quintic splines, O(q5), though at the expense of increased computation time.
Plots of a selection of kernels and their derivatives are shown in Figure 2.2. Here we can see the
commonly used cubic spline and its derivative has the same overall shape as other kernels, but the
second derivative is discontinuous. Note that the second derivative is not used in this study, and
comes into play when using velocity dependent forces (e.g. MHD). Now we have a suitable kernel
we must find some appropriate value for the smoothing length, which we will address next.
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Figure 2.2: Various SPH kernels in red, their first and second spatial derivatives (dashed and dotted
lines). The cubic spline is the simplest, but experiences discontinuities at higher derivatives, while
the Gaussian is the most robust it has the undesirable feature of being non-zero in all space.

2.2.3 Mass equation of SPH

As we have shown above the ath particle density is calculated in SPH formalism by setting Aa = ⇢a

in the interpolation summation to give a density equation of the form

⇢a =
X

b

mbWab (2.15)

where we will be using the shorthand notation of ~rab = ~ra � ~rb and Wab = W(|~rab|, h) throughout
the remainder of this chapter. The density summation shows that the dimensions of the kernel
are [1/distance3] in 3D, hence the h⌫D factor in Equation 2.14. The density of each particle is not
constant, but rather the mass is (i.e. the “size” of the particles the variable).

Any density formulation we construct should inherently satisfy the continuity equation
(Equation 2.5), ensuring that the rate of change of material in a system is equal to the rate it
flows out of the surface. First addressing the left hand side of the continuity equation, in material
derivative form, we obtain

D⇢a

Dt
=

X

b

mb
D
Dt

Wab =
X

b

mb
@Wab

@rab

Drab

Dt

=
X

b

mb
@Wab

rab
êab ⇧ ~vab =

X

b

mb~vab ⇧ ~raWab

(2.16)

where we have substituted for the particle velocity, ~vab = D~rab/Dt. This could be used to evolve
the density of the particles in the system, rather than evolving the integration of an additional
quantity (as we will with v, and u). However we would be introducing additional errors from the
adopted integration scheme and it is more practical to calculate the density via direct summation.
This can be done in the same loop over particles as all the other summation formulae (discussed
in the following subsections) at little additional cost. Now evaluating the right hand side of the
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continuity equation we find that

⇢a~ra ⇧ ~va = ~ra ⇧ (⇢a~va) � ~va ⇧ ~ra⇢a

= ~ra ⇧

0
BBBBBB@
X

b

mb

⇢b
(⇢b~vb)Wab

1
CCCCCCA � ~va ⇧ ~ra

0
BBBBBB@
X

b

mb

⇢b
(⇢b)Wab

1
CCCCCCA .

(2.17)

Where we have used the SPH summation equation with the variables ~Aa = ⇢a~va and Aa = ⇢a. We
can move the gradients inside the summations as they act only upon the properties of a. This gives
(recalling that a ⇧ b = b ⇧ a)

⇢a~ra ⇧ ~va =
X

b

mb~vb ⇧ ~raWab �
X

b

mb~va ⇧ ~raWab

= �
X

b

mb(~va � ~vb) ⇧ ~raWab ⌘ �
X

b

mb~vab ⇧ ~raWab.
(2.18)

The SPH continuity equation is then simply the sum of equations 2.16 and 2.18

D⇢a

Dt
+ ⇢a~ra ⇧ ~va =

X

b

mb~vab ⇧ ~raWab �
X

b

mb~vab ⇧ ~raWab = 0 (2.19)

thus satisfying the continuity equation. This is somewhat of a mute point however, as by con-
struction SPH should conserve mass due to each particle having a fixed mass. The process of
re-working the format of the SPH equation, i.e. “putting the density inside the operator”, is a good
way of ensuring symmetric functions (Monaghan 1992 refers to this as the second golden rule of
SPH).

So far we have limited our discussion to particles with fixed smoothing lengths. If we
were to give each particle its own individual smoothing length then we allow for an additional
adaptability. This does however negate some approximations in the derivations above as we can
no longer neglect the gradients in the smoothing lengths. An additional normalisation factor must
be added, ⌦a, to the Equation 2.16 above

D⇢a

Dt
=

1
⌦a

X

b

mb~vab ⇧ ~raWab(ha). (2.20)

the origin of which, and its a↵ect on the standard SPH rate equations is the subject of Appendix A.
For the purpose of this chapter we simply quote the resulting rate equation with the additional
“grad-h” term where Wab has been replaced by Wab(ha). The smoothing gradient factor can be
shown to be

⌦a = 1 � @ha

@⇢a

X

b

mb
@Wab(ha)
@ha

(2.21)

which is also shown in Appendix A.
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2.2.4 Momentum equation of SPH

The fluid mechanics momentum equation is summarised by the Navier-Stokes equations (or Euler
equations with no viscous forces) given by Equation 2.4. Ignoring the viscosity and the external
forces for now, the EoM of the system becomes1

D~v
Dt
= �

~rP
⇢
. (2.22)

In order to find the rate of change of momentum we need find an expression for ~rP/⇢, the force
for a purely inviscid fluid under no external forces. We will use the second golden rule of SPH
again and put the density inside the operators. First we will re-arrange the pressure gradient to
give

~raPa

⇢a
= ~ra

 
Pa

⇢a

!
+

Pa

⇢2
a

~ra⇢a (2.23)

and substituting in the relevant SPH summation equations

~raPa

⇢a
= ~ra

0
BBBBBB@
X

b

mb

⇢b

 
Pb

⇢b

!
Wab

1
CCCCCCA +

Pa

⇢2
a

~ra

0
BBBBBB@
X

b

mb

⇢b
(⇢b)Wab

1
CCCCCCA (2.24)

which re-arranges to give:

~raPa

⇢a
=

X

b

mb
Pb

⇢2
b

~raWab +
X

b

mb
Pa

⇢2
a

~raWab. (2.25)

The basic momentum equation is then simply

D~va

Dt
= �

X

b

mb

0
BBBBB@

Pa

⇢2
a
+

Pb

⇢2
b

1
CCCCCA ~raWab. (2.26)

If we had not placed the density inside the operator then we would not have this antisymmetric
form (noting that raWab = �rbWba). This momentum equation fulfils the conservation of mo-
mentum, and Newton’s third law, seen upon the swapping of indexes a and b and checking the
forces between them are antisymmetric (Fab = �Fba). For individual smoothing lengths (“grad-h”
formalism) we again just quote the solution here

D~va

Dt
= �

X

b

mb

0
BBBBB@

Pa

⌦a⇢2
a

~raWab(ha) +
Pb

⌦b⇢2
b

~raWab(hb)
1
CCCCCA , (2.27)

and direct the reader to Appendix A for a brief derivation of this form, and also evidence that the
momentum equation can also be derived from the Lagrangian and the Euler-Lagrange equations
rather than the Navier-Stokes equation.

1While we could simply use the discretisation equation and set Ab = Pb to give ⇢aD~va/Dt = �P
b mb(Pb/⇢b)~raWab,

this does not conserve momentum. This is seen by calculating the forces from a on b, using the anti-symmetric identity
raWab = �rbWba and seeing that Fab , �Fba, i.e. conflicting with Newton’s third law (see Rosswog 2009).
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2.2.5 Energy equation of SPH

The final basic SPH equation required for the evolution of a fluid system is the energy equation.
We start from the first law of thermodynamics, dUa = PadVa. Working in per-unit-mass units we
can substitute dVa = d(1/⇢a) = 1/⇢2

a ⇥ d⇢a. Taking these rates as a function of time and using
D/Dt for Lagrangain dynamics we have

DUa

Dt
=

Pa

⇢2
a

D⇢a

Dt
. (2.28)

We then use the continuity equation to substitute the change in density, giving the energy equation

DUa

Dt
=

Pa

⇢2
a

X

b

mb~vab ⇧ ~raWab. (2.29)

Monaghan (1992) uses the same method as for the above formulations to derive a similar expres-
sion instead involving Pb and ⇢b,

DUa

Dt
=

1
2

X

b

mb

0
BBBBB@

Pa

⇢2
a
+

Pb

⇢2
b

1
CCCCCA~vab ⇧ ~raWab. (2.30)

which conserves energy exactly. This form is less often used in practice however (e.g. Hubber
et al. 2011, Rosswog & Price 2007) as it has the unfortunate side e↵ect of producing negative
energies if there are significant local pressure variations, caused by the Pb term in the energy
calculation of a (Benz 1990; Wadsley et al. 2004). We can also include the e↵ect of individual
smoothing lengths (see Appendix A),

DUa

Dt
=

1
⌦a

Pa

⇢2
a

X

b

mb~vab ⇧ ~raWab(ha) (2.31)

which is equivalent to Pa/⌦a⇢2
a ⇥ D⇢a/Dt

2.2.6 The equation of state

In order to evaluate the SPH rate equations we need to set an equation of state to provide the
pressure of the ISM particles as a function of density. Our primary interest is the abundance of
molecular material which, as will become clear in the following sections, is a strong function of
temperature. As such we must evolve the thermal energy of the particles alongside the kinematic
quantities. We utilise an adiabatic equation of state, which gives the pressure as a function of
internal energy and density of the particles

P = (� � 1)⇢u (2.32)

where � is the adiabatic index, given by the ratio of specific heats at constant pressure and volume,
which for a monatomic gas is 5/3 ⇡ 1.67, which is the case for the majority of the ISM (but is 5/7
for diatomic molecules such as CO and H2). If we were not storing thermal energy we could use a
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general polytropic form without thermal energy, P = K⇢�, where K is some constant, though this
would result in a phase diagram that is a poor representation of the ISM2, where complex heating
and cooling mechanisms determine the evolution of u (see Section 2.3.1 and Figure 2.12). We also
use an isothermal EoS for testing purposes, where P = K⇢.

When we are discussing artificial dissipation in a later section we will be referring to the
adiabatic sound speed of the gas. This is calculated as

cs =

s
@P
@⇢
=

s
�P
⇢
=

s
kBT
mpµ

(2.33)

where µ is the mean molecular weight of the material in question (see Section 2.3 for a brief
description in relation to the ISM). We can then also calculate the thermal temperature from T =
Pµ/R⇢, i.e. T = µu(� � 1)/R, where R is the gas constant.

2.2.7 The density and smoothing length in “grad-h” SPH

As a rule of thumb we want the kernel to contract in regions of high density and keep the num-
ber of neighbours per particle approximately constant, making sure the resolution is consistent
between dense and di↵use regions of particles. The particles in the denser regions require smaller
smoothing lengths compared to those in the more di↵use medium, maintaining the same number
of neighbours (6 in the case of Fig. 2.1). If fixed smoothing lengths are used then some sacrifice
would need to be made between either over-resolving the very di↵use media, which are usually of
minimal importance, or under-resolving the high density regions which is often the location of the
more complex and interesting physics.

A natural choice would be to choose a smoothing length that is analogous to the length
scale which defines the density of a SPH particle, ⇢ / m/h⌫D , where ⌫D is the number of spatial
dimensions (Gingold & Monaghan 1982; Price 2012a). This gives a simple equation relating the
density and smoothing length of each individual particle

ha = ⌘

 
ma

⇢a

!1/⌫D

. (2.34)

The ⌘ factor is chosen to roughly give a number of neighbours, and specifies the smoothing length
scale, which can be calculated by

Nneigh =
4
3
⇡ (⇣⌘)3 (2.35)

in 3D3 where ⇣ is the compact support of the kernel, which is 2h for the cubic spline (i.e. the finite
radius of the smoothing sphere). We could define the number of neighbours explicitly rather than
⌘, but there are numerous pit-falls when constraining the Nneigh factor throughout a simulation (see
Price 2012a for a discussion). Good values of ⌘ have found to be between 1.2-1.5 (Rosswog &
Price 2007), and we adopt ⌘ = 1.2 in all simulations presented here corresponding to Nneigh = 58

2This would correspond to an isentropic flow, applicable in the absence of shocks or external energy sources
(Springel 2010b).

32D and 1D forms are similarly given by ⇡(⇣⌘)2 and 2⇣⌘ respectively (Price 2012a) .
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in 3D.
As we have now defined h in terms of ⇢, and ⇢ in terms of h we can use these relations to

iteratively solve for the smoothing lengths by ensuring that Equation 2.15 and Equation 2.34 are
equivalent, i.e. ⇢sum = ⇢(ha) to some tolerance. To do so it is common to use some solver to find
solutions (i.e. minimising the function) of the non-linear equation

f (ha) = ⇢(ha) � ⇢sum (2.36)

which can be done by the Newton-Raphson method (Gingold & Monaghan 1982; Price 2012a),
which requires the derivative of the density di↵erence function, f 0(ha),

@ f (ha)
@ha

=
@⇢(ha)
@ha

�
X

b

mb
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where @⇢a/@ha can be easily computed from the analytic expression for ⇢a. This results in the
iteration equation

ha,n+1 = ha,n

 
1 +

⇢(ha,n) � ⇢sum

3⌦a⇢(ha,n)

!
(2.38)

which can be iterated until some convergence is reached. We have used the definition of the
smoothing gradient parameter from Equation 2.21, the calculation of which is already done in the
force and energy rate equations, reducing the overall computational cost of the density calculation.
The cost can be reduced further by making a sensible initial estimate for the smoothing length
iterations using a predictor step for h and dhi/dt = dhi/d⇢i ⇥ d⇢i/dt = �hi/3⇢i ⇥ d⇢i/dt (Price &
Monaghan 2007).

2.2.8 Evolving the system

Once the forces have been calculated from the SPH summation equations, giving v̇x,y,z(t), u̇(t), they
are used to evaluate new positions (x, y, z), velocities (x, y, z), and energies, as well as updating h if
required. We e↵ectively now need to solve a set of ordinary di↵erential equations in order to find
the change in position and velocity from v̇ and u̇.

Each of the codes we utilise uses a di↵erent integrator. In phantom a second order “leapfrog”
is used, with a specific “kick-drift-kick” formulation (Springel 2005; Monaghan 2005). The initial
force “kick” is the applied to the velocity for half the initial timestep, and the particle is allowed to
“drift” at this speed for the full timestep. The force is then re-evaluated at the post-drift position
and is used to provide an additional velocity kick to update the velocity to the full timestep. This
integrator has been shown to be stable considering its low order, displaying greater integration
stability and conservation properties over its “drift-kick-drift” and even higher order Runge-Kutta
contemporaries (Springel 2005; Rosswog 2009).

sphng uses the Runge-Kutta-Fehlberg integrator, specifically the RKF1(2) integrator, which
is in essence a second order method imbedded within a first order method (Fehlberg 1985, see
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Cossins 2010 for a discussion). The construction of a first and second order estimate for the
updated variables means we can control the error in the integration explicitly, though we would
have to use the first order estimate in the actual integration. This issue can be mitigated by simply
enforcing a very small tolerance on the first-second order di↵erence, e↵ectively making RKF1(2)
a second order method with controllable accuracy.

2.2.9 Timestepping

Regardless of the actual integration scheme, we need some way of sensibly deciding the timestep
on which to advance the properties of the system. In the most basic case a timestep can be imposed
that is the time between the creation of dump files, �t0 (e.g. every 1/100th of the total simulation
run-time). However, this can easily be much larger than the dynamical time-scale of changes in
system variables, resulting in integration steps that do not correctly encompass the physics of the
system. The size of a timestep can then be chosen by use of the Courant condition which relates
the ratio of the spatial resolution �x to the time resolution �t and the velocity of the simulated
particles by CCFL = v�t/�x, which ensures information speed does not exceed the physical speed
of material in the simulation (Courant et al. 1928). CCFL is the dimensionless Courant number, and
has been constrained from numerical studies to be from 0.25-1 in order to satisfy convergence of
the time integration. We take a minimum of this timing criteria over all particles in the simulation
to obtain the global Courant timestep as

�tCFL = CCFL min
 

h
|vsig|

!
(2.39)

where vsig is the same signal velocity as that defined in Section 2.2.11. We use CCFL = 0.3 in the
simulations in this thesis. We also include a forcing timestep, which is calculated from the ratio of
the magnitude of the forces to the smoothing length

�t f = C f min

s
h

| ~f |
(2.40)

where we use C f = 0.25. Finally there is a time scale for astrophysical cooling, which will be
discussed later,

�tcool = Ccool min
������

U
U̇IS M

������ (2.41)

where Ccool = 0.3 as in Glover & Mac Low (2007). This is normally grouped with the forc-
ing timestep condition. The hydrodynamical time is dictated by the Courant timestep, whereas
the forcing and cooling times are used to advance the timestep with the same initial SPH force,
i.e. external and cooling forces are subcycled inside the main steps which is where neighbour
calculations are required.
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Individual timesteps

In astrophysical simulations time scales of importance can be very large when assessing gravita-
tional e↵ects, or small when resolving molecular/shock e↵ects. It then becomes prudent to allow
each particle its own individual timestep to avoid evolving all particles in the calculation on inte-
gration times of the slowest particles. In these cases particles are binned up into groups of 2n�tmin

and each time bin is evolved separately (Rosswog 2009; Hubber et al. 2011). For example these
timesteps can be of similar form to those above, but the actual evolution of the particles is done
in bins of particles with similar magnitude timesteps, making sure the timesteps of all particles in
the simulation coincide at some point, i.e. they should all be synchronisable at any given point in
the calculation (Hernquist & Katz 1989). Care must obviously be take to ensure that a particle is
correctly aligned with the others in the simulation before it is moved to a di↵erent timestepping
bin as the individual timestep increases or decreases (Hubber et al. 2011).

2.2.10 Neighbour finding

Now we have a good grounding in the numerical recipes behind SPH, and a method of advancing
the particle properties, all that remains is some way of knowing the relevant particles in the SPH
summation equations, the “nearest neighbours” (i.e. the relevant b’s for which to calculate the
properties of a). The most obvious way to do so would be to simply loop over all particles, but this
would be aO(N2) process, a very computationally expensive scaling. By using a kernel of compact
support we have limited ourselves to a small number of neighbours (usually in the range 50-100)
but as the particles move around the identity of these neighbours will change, so some method
of re-populating these neighbour-lists is required. Two such options that are used frequently in
SPH codes are “Link lists” and “Tree codes”, both o↵ering an improvement on the basic O(N2)
neighbour search (Liu & Liu 2003).

Link lists

A simple neighbour searching scheme is to use a link list method. All SPH particles are binned into
a grid that covers the entire computational domain, where grid cells have a size of 2h when using
the cubic spline. Particles in a cell only then search their own and adjacent cells for neighbours,
resulting in a much smaller search domain, only 27 cells in 3D (Domı́nguez et al. 2011). Particles
are also chained to each other via some link array allowing for fast looping through all particles in
each cell (Liu & Liu 2003).

This method can be of order O(N) in some cases, but can be less e�cient if there are large
fluctuations in smoothing lengths, as it could result in large numbers of particles in each of the
grid cells increasing the time required to walk through the neighbouring cells (Hernquist & Katz
1989). Link lists are used in phantom where the cell width is set to 2

P
a ha/N and we utilise a

cylindrical cell structure for our galactic disc simulations.
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Trees

The other common neighbour finding method is to use a hierarchical tree-like structure, such as
that of Barnes & Hut (1986). The basic method involves building up an octree of the simulation
domain (i.e. first splitting the simulation into a 2x2x2 octal) which is then subdivided into further
cells if they contain any particles. This is done until the child cells at the bottom of the tree contain
1 or 0 particles (the “leaves” of the tree, where the tree is actually an inverted tree). For nearest
neighbour calculations, such as finding which particles are required for the SPH summations, a
search is done by moving back up the tree from the particle of interest to find which particle
nodes (a point where branches separate) are within the region of interest. For instance, whether
a neighbouring particle is within the kernels compact support radius, r  2h when using a cubic
spline. The neighbour search then descends down the branches of that node, checking whether the
leaf particles are within the compact support region, thus building a neighbour list for a specific
particle while retaining the tree for use with the other particles.

The use of a tree has the added advantage of being able to be used for the neighbour finding
and gravitational force calculation (Hernquist & Katz 1989), and is used for calculation of N-
body gravitational forces in sphng. When the calculating the gravitational forces the tree is walked
through, instead of only using the nearest neighbours the gravitational calculation must also take
into e↵ect the material outside the kernel support radius. As the tree is traversed a distance criterion
is calculated on each node. If ratio of the size of the node to the distance from the particle of
interest is greater than some tolerance then the branches of the node are then traversed. However,
if less than this tolerance then the material encompassed by the node is lumped together to form a
single larger body from which the gravitational attraction is calculated using the appropriate centre
of mass and node mass which is stored when the tree is created (Hernquist & Katz 1989). The
gravitational forces must also be softened to avoid extreme accelerations of particles during close-
encounters; this is soften on a scale of the smoothing kernel (Bate & Burkert 1997). The tree in
sphng is described in greater detail in Benz (1988) and Benz et al. (1990), which was implemented
using the version from Press (1986). Tree based neighbour finding is usually an order O(N log N)
process and can be pushed down to O(N) by clever symmetrising and storing of cell-cell forces
(Hernquist & Katz 1989; Dehnen 2002).

2.2.11 Artificial dissipation

Artificial viscosity

One of the major advantages of SPH is that it is completely dissipation free by construction. This
can have adverse properties when attempting to model shock-based problems. On large scales the
rapid change in system properties (be it density, velocity, pressure, internal energy etc.) appear
as discontinuities in the fluid flow. While in reality this discontinuity is in fact smooth it would
require a simulation resolution on macroscopically small scales to correctly capture. The smooth
gradients inherent in the SPH formulation do a poor job in such regions where steep gradients are
e↵ectively discontinuities on macroscopic scales.
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Von Neumann & Richtmyer (1950) suggested that this problem could be over-come by the
addition of some artificial dissipation, or viscosity. The addition of an artificial viscosity (AV)
smoothes out gradients near these discontinuities, acting similarly to physical viscosities. Such an
artificial viscosity will dissipate kinetic energy into heat, generating the required entropy increase,
and will broaden the shock to a resolvable scale rather than a discontinuous one, allowing for
shock capturing. The AV does not in essence reproduce a physical process but rather smooth out a
shock front that would otherwise be discontinuous on the length scales relevant to the calculation.

Von Neumann & Richtmyer (1950) formulate this viscosity into a pressure of the form P⌫ =
�A⇢csl(~r⇧~v)+B⇢l2(~r⇧~v)2 for some constants A and B over some resolvable length scale l (h in SPH
Rosswog 2009). The A term is analogous to a classical bulk viscosity (as is ↵ described shortly)
and B the Neumann-Richtmyer quadratic term (as is �), and both only activate in converging flows
(r ⇧ v < 0). Using AV’s of this form had drawbacks however, resulting in either over-dissipation
or post-shock oscillations (Monaghan & Gingold 1983). This approach was refined by Monaghan
& Gingold (1983) who suggested additional pressure term (actually of dimensions P/⇢2) to be
included in the standard momentum equation, Equation 2.26, of the form

⇧ab =
�↵c̄abµab + �µ2

ab
⇢̄ab

(2.42)

where
µab =

hab~vab ⇧ ~rab

r2
ab + ✏h

2
ab

(2.43)

where ↵, �, ✏ are constants to be set. The over-lined terms indicate averaged quantities between two
particles; ⇢ab = [⇢a + ⇢b]/2 and hab = [ha + hb]/2 where the velocity term is simply ~vab = ~va �~vb.
Then ~rab ⇧ ~vab will be < 0 if particles are approaching, i.e. when a shock may occur, and is
used as a criterion for activating the viscosity (i.e. ⇧ab = 0 if ~rab ⇧ ~vab > 0). This form is
e↵ectively a combination of Neumann-Richtmyer (�) and bulk (↵) viscous terms. The � term was
not originally present in the Monaghan & Gingold (1983) formalism but was added to prevent
particle penetration and correctly model strong shocks (Monaghan 1992). The standard values
adopted are ↵ = 1, � = 2↵ (Monaghan 1992), usually providing adequate dissipation at a shock
while ✏ = 0.01 protects against small separation singularities (as rab ! 0). There is also the
capacity to set individual values of ↵ to the particles, to avoid dissipation where it may not be
needed such as converging flows in the absence of shocks.

This results in a full momentum equation of the form
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where the artificial viscous force produces a repulsive force when particles move towards each
other. The dissipated kinetic energy must be re-assigned as thermal energy to satisfy energy con-
servation. To this end the standard SPH energy equation gains the contribution

DUa,AV

Dt
=

1
2

X

b

mb⇧ab~vab ⇧ ~raWab (2.45)
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Figure 2.3: An isothermal colliding flows test using phantom in 3D where gas flows are moving
at v = ±4 initially. The density and velocity profiles are shown after 0.8 dimensionless time units.
Di↵erences in shock capturing can be with di↵erent AV parameters, shown in di↵erent colours.
The � term is fixed to 2↵ when ↵ is fixed, and 2 when variable (pink points). The analytical
solutions are shown by dashed lines.

giving a full energy equation
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~vab ⇧ ~raWab. (2.46)

This is the “classical” AV formulation, and is the standard in the sphng code (with additional
“grad-h” terms). The ↵ term can actually be related directly to the coe�cients of physical vis-
cosity4. The shear viscosity parameter can be shown to be equivalent to ⌘ = ↵hcs/10 and bulk
parameter to ⇣ = 5⌘/3 (Monaghan 2005; Lodato & Price 2010; Price 2012b).

The addition of AV is illustrated by the colliding flows test shown in Fig. 2.3. Here we have
set up an isothermal shock tube test in 3D in a box of dimensions 8 ⇥ 1 ⇥ 1 using approximately
160000 particles initially arranged on a hexagonal lattice with velocities v = ±4 with flows directed
towards each other either side of x = 0. While better analysis of AV forces is seen in 1D, neither
of the codes we use in this thesis have the capacity for anything but 3D. This results in a strong
shock propagating from x = 0 manifesting as a plateau in ⇢ and vx, shown by the analytic solution
(dashed line). The di↵erent coloured points refer to di↵erent values for the AV coe�cients and
� = 2↵ for all tests apart from the pink points where ↵ is variable and we have fixed � = 2. It is
clear that ↵ = 1 to 2 do a good job at capturing the shock in ⇢ and vx whereas lower values do
a poorer job. The ↵ = 2 case applies slightly too much dissipation, which can be clearly seen in
the pre-shock regions of the vx panel. A test was also performed where individual values of ↵ are
assigned to each particle which allow for dissipation only where necessary utilising the switch of
Morris & Monaghan (1997) that is a function of sound speed and smoothing length of the particles

4The shear viscosity develops when a fluid flow when it passes some boundary moving at a di↵erent velocity, know
as a shear flow. Bulk viscosity on the other hand is the manifest as the viscous friction experienced by a fluid expansion
or compression in the absence of shear flow. The ⌘ and ⇣ terms enter into the viscous Euler equations, quantifying shear
and bulk viscosity respectively.
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(Lodato & Price 2010). This di↵ers little compared to the fixed case, though it does apply the least
dissipation in the region not yet experiencing a shock (vx panel). This highlights that a variable ↵
can be useful in that it applies less dissipation where it is not needed.

An alternative formulation of AV was proposed by Monaghan (1997), where the authors
use solutions analogous to Riemann solvers5. The original purpose of which was to enable the
capture of relativistic shocks. We present this form of AV in a similar form to the classical ↵ � �
version using the parameter Qab with the same dimensions as ⇧ab such that the AV contribution
to the momentum equation is given by

D~va,AV

Dt
= �

X

b

mbQabraWab (2.47)

where Qab is given by

Qab =
↵AVvsig|~vab ⇧ r̂ab|

⇢ab
(2.48)

when ~vab ⇧ r̂ab  0 and 0 otherwise to ensure converging flows. We use the shorthand notation
of Wab = [W(rab, ha) + W(rab, hb)]/2 to average kernel weights, and can include additional ⌦
denominators for the kernels to correct for variable smoothing lengths. This formulation contains
a signal velocity term, vsig, which is the averaged signal speed between two particles. The exact
choice of signal velocity di↵ers between users, but a general form is given in Price (2012a) as

vsig =
1
2

h
cs,a + cs,b � �AV~vab ⇧ r̂ab

i
(2.49)

for ~vab ⇧ r̂ab  0, and is 0 otherwise, where cs is sound speed of a given particle. While some forms
in the literature fix �AV = 1 (Rosswog & Price 2007; Hubber et al. 2011) or some other value
(Springel 2010b) the general form is that of a sound speed term in combination with a velocity
term. The formalism is similar to the previous notation, with linear and quadratic terms in velocity
projection (~vab ⇧ r̂ab) scaled by ↵AV and �AV terms respectively. This can then be similarly applied
to the thermal energy equation to give
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mbQab~vab ⇧ ~raWab (2.50)

which can be added to the standard energy equation.

Artificial thermal conductivity

It has been shown that in some cases the AV alone is not enough to resolve certain physical phe-
nomena. There is a need to add additional dissipation terms for each variable of the system. In
adding AV we have corrected for discontinuities in the velocity distribution, but it is also neces-
sary to add additional dissipative energy terms. This problem was noted by Agertz et al. (2007)
whose calculations of Kelvin-Helmholtz instabilities showed a lack of characteristic rolling fea-

5A Riemann solver is (unsurprisingly) designed to solve Riemann problems which include shock dynamics and
other discontinuities coupled to the Euler equations (e.g. Toro 1992).
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Figure 2.4: Adiabatic “sod” shock tube problem test in 3D using phantom with di↵ering values
of ↵, � and ↵u, indicated by di↵erent colours. The fiducial values are shown in black. Analytical
solutions to the density, velocity, energy and pressure over-plotted as dashed lines. Low values of
↵ and � result in a failure to capture many aspects of the shock structure and sinusoidal oscillations
around at post-shock regions.

Figure 2.5: Same as Fig. 2.4 but keeping ↵ and � fixed to 1.0 and 2.0 respectively while only
varying ↵U . The main e↵ect of ↵U is to reduce the energy (and consequentially P) spike at x = 0.5
in the figure. ↵U is fixed to 1 when used. The x-axis shows a narrower range than Fig. 2.4 as the
points are indistinguishable outside of the range shown.
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Figure 2.6: Kelvin-Helmholtz instability test without and with artificial thermal dissipation (left
and right panel pairs respectively). The lack of heat dissipation across the density boundary is
clearly seen in the run without artificial conductivity, which also manifests as a strong discontinuity
in internal energy of the particles. With the addition of artificial thermal conductivity the fluid
dissipates energy smoothly across the contact region, and displays a smooth energy transition.
The test was set up using an initial 2:1 density contrast and 3.8 million particles in 3D using
phantomwith ↵u fixed to 1 when used.

tures at the high-low density contact region. Price (2008) proposed an additional artificial thermal
conductivity, AC, to address this problem, where the energy equation is augmented by

DUa,AC

Dt
= �

X

b

mb
↵UvU

siguab

⇢ab
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where ↵U is the dimensionless artificial thermal conductivity parameter that smoothes out gradi-
ents in internal energy between particles, and uab = ua � ub (see also Valcke et al. 2010). There
is an additional signal velocity which can be di↵erent to that used in standard artificial viscosity.
Two suggestions in the literature are either a pressure di↵erence, vU

sig =
p|Pa � Pb|/⇢̂ab from Price

(2008) or velocity projection, vU
sig = |~vab ⇧ r̂ab| from Wadsley et al. (2008). The velocity projection

form is used in phantom.
Illustrations of the importance of AC are shown in Figures 2.4, 2.5 and 2.6. In Figures 2.4

and 2.5 we show an adiabatic/Sod shock tube test, where gas is initially stationary but with large
discontinuities in the density and energy distributions on either side of x = 0. The gas is then
allowed to expand, causing a shock wave to propagate through the tube. Once again this test is in
3D, and the analytic solutions for ⇢, vx, P and U are shown by the dashed lines. �=2↵ for all the
tests shown. Figure 2.4 shows that the change in the standard ↵ and � viscosity parameters result
in poor capturing of the shock, magenta and blue points, as in Figure 2.3.

In Figure 2.5 the e↵ect of AC is included, where the black points are the same as those in
the previous figure and represent ↵U = 0. Increasing ↵U to 1 or 2 has a much more subtle e↵ect
than ↵, but can be seen to reduce the “blip” in U and P at the contact discontinuity. The points for
↵U = 2 are beginning to over-smooth the shock, and if increased further will severely dissipate the
shock front discontinuity.

The importance of AC is much more evident from the Kelvin-Helmholtz test shown in
Figure 2.6, where the gas is set in two parallel streams of material with a 2:1 density contrast. The
left panels show the test with no AC, and the right with AC added and ↵U = 1. In the test with
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Figure 2.7: Top-down column densities of disc galaxies after 330Myrs of evolution with di↵erent
AV parameters. A simulation with the fiducial values of ↵ = 1 and � = 2 is shown in the first
panel, with double and half these values in the second and third panels. The fourth panel shows a
simulation with � = 2 and individual ↵ parameters for each particle in the range 0 < ↵i < 1.

active AC the thermal energy smoothly traverses the contact discontinuity. The run with no AC
keeps the di↵erent flows segregated throughout the test, with a clear discontinuity in the thermal
energy.

The impact of di↵erent artificial viscosity parameters in our simulations is shown in Figures
2.7 and 2.8. Here we show a simple galactic disc simulation with a four armed spiral pattern
(details of which will be discussed in Chapter 3) after 330Myrs of evolution. The four di↵erent
simulations show our standard parameters, ↵ = 1, � = 2, double and half these values, and a
simulation where each particle has its own individual ↵i. The top-down column density plot in
Fig. 2.7 shows some di↵erences with AV parameters. It appears that increasing the strength of
the AV causes the dilution of inter-arm structures, and decreasing the AV enhances them. The
calculation with variable viscosity appears similar to the standard values. Figure 2.8 clarifies this
di↵erence somewhat by showing the temperature profile of the gas as a function of density. Here
we see that the calculations with higher or lower than the standard AV strength do not produce
the coldest regions present when using the fiducial values. The variable viscosity calculation has a
temperature distribution near identical to that of the standard values, though this could be a result
of both having � = 2. The main conclusion to draw from these figures is that there is not a large
di↵erence in morphology and thermal properties when using the standard, weaker, or adaptive AV
parameters but using stronger than average values can cause artificial smoothing of morphological
features and a less populated cold phase ISM.

Similar tests to those shown for AV were performed for the ↵U parameter, with values 0,
0.5, 1 and 2. Both the top-down density distributions and the thermal properties of the gas were
e↵ectively the same for the di↵erent values of ↵U . The only minor di↵erence was a reduced pop-
ulation of the hottest ISM gas with the highest strength AC, ↵U = 2. The gas in the simulations
presented here is unlikely to have strong thermal discontinuities as present in the Kelvin-Helmoltz
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Figure 2.8: Temperature-density distribution from the same four simulations shown in Figure 2.7.
The small insert shows a histogram of T for each case. The standard AV parameters allow for the
development of cold ISM component, where CO is easily maintained. The impact of individual ↵
coe�cients is marginal.

test, as any dramatic thermal change should be smoothed out by astrophysical cooling and strongly
coupled to density gradients which should be smoothed by standard AV. If there were some strong
thermal source that caused large temperature gradients in the gas then the choice of ↵U could be-
come more important. This could play a role in calculations including supernovae feedback, where
the resulting instantaneous thermal shockwave could produce strong thermal discontinuities.

The standard literature values of ↵ = 1, � = 2 and ↵U = 1 appear suitable for capturing
the shock fronts in the tests shown here, to the capabilities of SPH. Lower values of ↵ and � result
in a dramatic inability to reproduce shock features in thermodynamical quantities, as shown by
the colliding flows and sod tube tests ins Figures 2.3 and 2.4. Stronger values can be seen to be
beginning to add too much dissipation to the shocked front, evident from Figures 2.7 and 2.8. ↵U

had a much weaker e↵ect, but is seen to reduce artefacts at the contact region in the sod tube test
(Fig. 2.5). We therefore adopt ↵ = 1, � = 2 and ↵U = 1 throughout the remainder of this thesis.
Some improvement can be found in using individual values of ↵ to avoid unwanted dissipation,
but the results shown in Figures 2.7 and 2.8 shows the e↵ect of this is unnoticeable for the scales
investigated here.

2.2.12 SPH code specifics

Here we provide a brief description of the SPH codes used in this thesis. The main di↵er-
ences/similarities between the two codes are summarised in Table 2.1.

phantom

The phantom code is built specifically for non-gravitating problems, at high resolutions with a
low-memory footprint, and has been extensively adapted for MHD computations (Price & Feder-
rath 2010; Lodato & Price 2010; Tricco & Price 2012). The particles have individual smoothing
lengths and timesteps, the system is evolved using a leapfrog integrator, and neighbours found
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Characteristic phantom sphng

Neighbour finding Link list Binary tree
Time-step integrator 2nd order leapfrog 2nd order Runge-Kutta-Fehlberg

Gravity N/A Binary tree (or Grape board)
Dissipation Adapted Monaghan 97 + Conductivity Standard ↵-�

Kernel Cubic spline Cubic spline
Nneigh (3D) 58 58

Density evolution Newton-Raphson iteration Newton-Raphson iteration

Table 2.1: Summary of the main aspects of the two SPH codes used in this thesis.

using linked-lists for reducing computational e↵ort with OpenMP and MPI parallelisation. Due to
a unique arrangement of the SPH equations, and separation of the average density terms in Equa-
tion 2.47, the density sums need only be calculated once on each timestep. This speed comes at a
cost, with no current implementation of particle self-gravity (which would require a much slower
tree-like neighbour finding algorithm).

ISM chemistry, cooling and simple galactic potentials were only recently incorporated into
phantom (Dobbs 2011a), but have not been well tested. Here we extensively tested the code,
leading to corrections in the particle timestepping. The main improvement was the inclusion
of a suite of gravitational potentials for use with galactic disc simulations, and are discussed in
Chapter 3.

sphng

The second SPH code utilised in this thesis is sphng (“SPH-Next-Generation”). An older code than
phantom, sphng is based on the original version of Benz et al. (1990) and has been substantially
modified since its creation. Notable improvements include the addition of accreting sink particles
(Bate et al. 1995), magnetic fields (Price & Monaghan 2004) and radiative transfer (Whitehouse
et al. 2005), as well as the standard variable smoothing lengths, individual timesteps and paralleli-
sation using both OpenMP and MPI. Most importantly is that sphng allows for the calculation of
gravitational forces. This allows for inclusion of point mass gravitating particles that are used to
represent the Galactic stellar component, the subject of Chapter 5.

The code has already been used extensively for galactic scale ISM modelling. These studies
include the e↵ect of ISM cooling and chemistry (Dobbs et al. 2008), self-gravity (Dobbs 2008)
and stellar feedback (Dobbs et al. 2011).

Brief comparison between codes

Figure 2.9 shows simulations of simple, low-resolution galactic discs using the sphng (top: blue)
and phantom (bottom: red) codes. These snapshots are at 472 Myrs of evolution6 and show the top
down particle distribution, the temperature-density profile and the CO abundance (the calculation

6The evolution times frequently used in this thesis of 236, 354 and 472 Myrs correspond to 5, 7.5 and 10 code units,
determined from the gravitational constant, the distance and mass code units adopted; um = 1⇥105 M� and ud = 100 pc,

giving a time unit of ut =
q

u3
d/Gum = 47.2 Myrs.
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Figure 2.9: Simulations of gas in a disc galaxy constituting of 40000 particles with a total mass
of 4 ⇥ 109M�. The top row is from a simulation in phantom, and the bottom in sphng, both after
472 Myrs of evolution. The position, T and CO abundance of the SPH particles trace the same
global flow in codes, with minor di↵erences resulting from inherent code di↵erences listed in
Section 2.2.12. The chemical network are described in detail in Section 2.3.

of which is discussed in the next section). The simulation is of only 40000 particles, embedded in
a simple disc potential constructed to reproduce the flat Galactic rotation curve including a a four
armed spiral potential.

Comparing global quantities of the simulations from each code we see that they agree rea-
sonably well considering the di↵erent architecture. The position of the gas traces that of the spiral
arms, with small scale spurs peeling away at around R=5kpc. The temperature of the particles
behaves the same with density for both codes. There is a small population of particles that reach
higher temperatures in the range �24 < log10 ⇢ < �23 in the phantom run, though this only
amounts to 1% of the particles. The associated phase diagram shows that the gas has followed the
warm ISM track into the unstable region (left, Fig. 2.12), implying the phantom calculations allow
gas to maintain its warm nature longer in the thermally unstable region before rapidly cooling into
the cold ISM region compared to sphng. This could easily be the result of the di↵erent AV formal-
ism, or the di↵erent formulation of the SPH energy equation. The chemical evolution is similar
for both codes, showing only minor di↵erences. The median values7 of the thermal energy, CO,
H2 and H I fractions agree between 0.5-10%, with CO giving the greatest discrepancy between the
codes. This CO is sub-cycled numerous times, and is an extremely sensitive function of density,
making slight di↵erences in density evolution between the codes lead to moderate di↵erences in
the CO abundance of individual particles.

7As the abundances vary on log scales their means are extremely sensitive to single particles having a slightly
increased density, which can di↵er easily between codes due to the di↵erent architecture.
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2.3 ISM specific physics

The physics so far discussed only covers hydrodynamical and gravitational forces. For the use of
SPH on galactic scales we must include additional physical e↵ects, predominantly ISM heating
and cooling mechanisms. The various heating and cooling mechanisms have been adapted for
Galactic scale use in Dobbs et al. (2008), and will only briefly be discussed in Section 2.3.1. Of
paramount importance to the work presented here is the molecular content of the ISM. Rather
than assuming some constant molecular gas fraction that would linearly scale with gas density, we
evolve the gas content of each SPH particle individually. This is discussed in full in Section 2.3.2.

The various heating, cooling and chemical processes require a measurement of temperature,
determined by the equation T = µu(� � 1)/R. This requires some value of the mean molecular
weight, defined by the ratio of mass density to number density (M/n) of all species of interest,
j. We can use the atomic weight, A j, of each species to make the calculation simply a sum of
number ratios of each species, �, a.k.a. the abundance of each species8 with respect to H I, given
by n j/nHI. The mean molecular weight is then

µ =

P
j M jP
j n j
=

P
j n jA jP

j n j
=

P
j � jA jP

j � j
=

P
j q jP
j � j

(2.52)

where we have divided through by the number density, and refer to the ratio by mass of each
species as q j = � jA j. In the ISM there are a wealth of di↵erent species, but only a handful are
of significant abundance to contribute to the calculation above, specifically H I, He and H2 where
each has weights of AHI = 1, AH2 = 2 and AHe = 4. The abundance of H2 is evolved in our
calculations, so we know this at any point in the simulation, and as it is composed of hydrogen we
can formulate the H I abundance simply as �HI = 1 � 2�H2. Helium is of little importance to the
simulations presented in this thesis, so we have fixed the abundance at �He = 0.1 (Glover & Mac
Low 2007). This gives the following equation for the mean molecular weight

µIS M ⇡ qHI + qH2 + qHe

�HI + �H2 + �He
=
�HI + 2�H2 + 4�He

�HI + �H2 + �He
. (2.53)

In the case where the gas is entirely atomic we find µIS M = 1.27 and if the hydrogen is entirely in
a molecular state then µIS M = 2.33.

Several processes involved in the chemistry and cooling involve the heating/destructive ef-
fects of the local radiation field. Here we need to take into account the attenuation/extinction
e↵ects from the column density of the surrounding material that e↵ectively shield the target
atom/molecule from the incident photons. This manifests as an additional multiplicity factor that
reduces the reaction rate as a function of the optical depth of the surrounding medium, simply of
the form9 f = e�⌧� . This can be through individual line absorption by certain species, such as in
H2 self shielding, or through continuous absorption by ISM dust grains. We can relate the opacity

8The number ratios and mass ratios are � and q respectively, where for the species of interest we have qH2 = 2�H2

and qHe = 4�He.
9This is solution of the radiative transfer equation in the absorbing only case, i.e. Beer’s Law, and will the subject

of further discussion in Chapter 5
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to a parameter called the “visual extinction”, Av, by ⌧ = �Av, which is the di↵erence in magnitudes
between the shielded and unshielded cases. The ratio of visual extinction has been seen to be a
constant ratio of the colour excess, E(B � V) = AB � AV , (Draine & Bertoldi 1996; Bergin et al.
2004), by amounts of either

RV =
AV

E(B � V)
⇡

8>><
>>:

3.1 In di↵use ISM
5.0 In dense clouds

(2.54)

Calculating the visual extinction is no easy task, but there exists a simple conversion between the
column density of the gas and the extinction using a visual extinction conversion factor, ACF

V , via

ACF
V = AV/Ncol = 5.348 ⇥ 10�22cm�2 (2.55)

where ACF
V is the extinction per unit column density (Ncol) for which we will use a constant value

throughout the work presented in this thesis unless stated otherwise. This relation was found
by measuring the colour excess as a function of column density in various Galactic sources and
noticing the ratio between them was roughly constant, with a slope E(B�V)/Ntot = ACF

V Rv (Bohlin
et al. 1978). The value above is the standard value from the work of Bohlin et al. (1978) but there
are several values in the literature. A statistical analysis by Güver & Özel (2009) find a value
20% greater than this standard, however, as we will show later in this section, ACF

V must change
by orders of magnitude to have a noticeable e↵ect in our calculations. This extinction will come
into play in dust shielding factors in photon based reactions in dense regions. In several rates
the UV radiation field will be attenuated by a dust shielding factor, e.g. Gdust = fdustG0 where
fdust = e��X ACF

v NHI . The values of �X adapt this relation slightly for specific target species (Glover
et al. 2010), and take values of 2.5 for cooling, H I and CO chemistry and 3.74 for H2 dust shielding
(which has additional self shielding attenuation).

In order to utilise Equation 2.55 we require a measurement of column density, which is
the density of material integrated spatially along the line of sight between two points. The column
density is somewhat di�cult to compute while keeping the code relatively simple and streamlined.
A full treatment of column densities would require large neighbour calculations, scaling asO(N5/3)
compared to the O(N log N) for gravity or O(N) for nearest neighbour finding (Glover & Mac Low
2007). Instead we assume the column density is simply the local density times by some distance
measurement, li

N =
Z

nds ⇡ nli (2.56)

where we have approximated the distance of integration by a distance relevant to that of the chem-
istry in question. The smallest is the general distance scale used for cooling and heating rates,
specifically PAH and photoelectric e↵ects, where we adopt lcool = 10pc. The H I ionisation is
shielded on much larger scale, a value of lHI = 100pc, due to its chemistry mostly evolving in
sparser regions. Finally there is the length scale used in the evolution of H2 and CO, which evolves
in much denser regions than H I, hence has a smaller column density scale length lph = 35pc. The
latter of these comes from the typical distance to a B0 star, due to their large luminosity and higher
abundance than the more luminous O stars. This is the same method as adopted by Dobbs (2008),
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Figure 2.10: Cooling (left) and heating (right) functions discussed in the main text and utilised in
our calculations. We have included CI and SiI for comparison using abundances of 1% of their
ionised counterparts, but these are absent in our simulations. The pressure-density profile used is
similar to that shown in Fig. 2.12.

who investigate values of lph from 15-100pc, finding the amount of molecular gas is only weakly
coupled to this distance measurement.

2.3.1 Cooling and heating functions

The thermal evolution of the ISM can be separated into two distinct components,

U̇IS M = �IS M + ⇤IS M, (2.57)

which are added into the standard SPH energy equation. We use the convention that ⇤ is en-
ergy loss (cooling) and � is energy gain (heating). The various heating and cooling processes
contributing to ⇤ and � are taken from the work of Glover & Mac Low (2007). In order for an
energy scheme to be relevant to the calculation there are numerous criteria that must be satisfied.
The species involved in the process must be abundant enough to ensure frequent collisions. The
energy required for the reaction must be of the order of the kinetic energy of the gas, and the
probability of the reaction (e.g. the Einstein coe�cients) must be large enough for the process to
be su�ciently frequent. The various heating and cooling e↵ects relevant to our calculations are
shown as a function of density in Figure 2.10, and are described individually briefly below. Due
to the complex nature of many of these rates, the cooling and heating is tabulated into numerous
arrays as a function of temperature at the beginning of the calculation. Rates that are collisional
in origin have a density dependance of n2, whereas those caused by direct photon interaction scale
as n.

The various heating and cooling processes are listed in Table 2.2, along with their corre-
sponding references. We refer the reader to these references for details and formulation of the
heating and cooling processes, and will only briefly discuss them here. ISM cooling comes from
a variety of mechanisms including H I collisional excitation, H2 vibro-rotational collisional exci-
tation, fine structure excitation of C II, Si II and O I, heat transfer between gas and dust grains, and
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Figure 2.11: Combination of the heating and cooling functions shown in Fig. 2.10. The atomic
(H I) cooling is shown for comparison but only dominates for a small number of particles in each
simulation. Si I and C I are not included in these total rates. The resulting heating and cooling
functions are of the same order of magnitude as a function of density.

the recombination of free electrons with PAH and dust grain surfaces. The dominant of these pro-
cesses are the fine-structure cooling lines in the mid to high density regime, with recombination
cooling becoming more important at lower densities (Fig. 2.10). Atomic and molecular hydrogen
cooling, while strong, only becomes significant in a small fraction of the ISM. These are shown
as the dashed lines in Fig. 2.10. We neglect the cooling e↵ects of CO, but this is compensated for
by maintaining a constant fraction of C II for cooling purposes, and the fact that the C II and CO
cooling functions are similar (Glover & Jappsen 2007).

ISM heating is provided by two mechanisms; photo-electric heating on dust grains, large
molecules and PAH’s, and heating by cosmic-rays (right panel of Fig. 2.10). The photo-electric
heating is the stronger of the two, except in the densest regions where dust becomes significantly
shielded by the high column density ISM (Bergin et al. 2004). Cosmic-ray heating provides 20eV
per reaction and takes into account heating of all ISM species, though is predominantly the ioni-
sation of H I.

Process Description Reference
H I (atomic) cooling Electron collisional excitation/ Sutherland & Dopita (1993)

resonance line emission
H2 (molecular) cooling Vibrational/rotational excitation cooling Le Bourlot et al. (1999)

by collisions with H I, He and H2
Fine structure cooling C II, Si II and O I collisions with Glover & Jappsen (2007)

H I, H2, free e� and H II
Recombination cooling Free e� recombining with ionised gas Wolfire et al. (2003)

on PAH and dust grain surfaces
Gas-grain cooling Dust-gas collisional heat transfer Hollenbach & McKee (1989)
Cosmic-ray heating Temperature independent 20eV Goldsmith & Langer (1978)

cosmic-ray photons
Photo-electric heating UV e� excitation from dust and PAH Wolfire et al. (2003)

Table 2.2: Heating and cooling processes present in our ISM calculations.
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Figure 2.12: Thermodynamical properties in a simple disc galaxy simulation. Particle proper-
ties have been averaged in density space over the 1 million particles to clarify features. The
temperature of the gas plateaus around 10,000K, corresponding to the warm neutral/ionised ISM
component. A two-phase ISM is clearly seen in the P-⇢ diagram, separated by an unstable region.
A small fraction of the gas follows the warm track higher with increasing density and drops down
further later in the unstable region.

The total heating and cooling rates are shown in Figure 2.11. We also show the e↵ect of
the atomic cooling function, which dominates the hot medium, but this is only a small fraction of
the simulation particles (green dashed line). The heating and cooling is of comparable strength in
most places (as can be seen by eye). In the region of thermal instability near 1 atom cm�3 there is
a lot of variation in the cooling rates (this has been smoothed over in Figure 2.11 for clarity). This
is due to the splitting of the population between gas that falls into the pressure well and gas that
continues to travel up the warm branch of the phase-diagram before falling in, continuing to cool.

The resulting thermodynamic properties of the ISM gas in a “standard” simulation are
shown in Figure 2.12. The temperature and pressure profiles as a function of number density
are shown for gas in a disc subject to the multitude of heating and cooling e↵ects outlined above.
Properties have been binned in density space for clarity, as there is a large variation in the mid-
density range. The temperature profile in the left panel shows a clear plateau around 10000K,
where the gas condenses almost isothermally up to a density of 1 atom cm�3. Here the gas begins
to cool and experiences a drop in pressure, entering the thermally unstable region (the shaded area
in the right panel of Fig. 2.12). The gas can continue to cool and contract, becoming molecular in
the process. These phase curves are a direct result of the heating and cooling functions, and show
a good match to others in the literature (e.g. Field et al. 1969, Wolfire et al. 1995, Liszt 2002)
showing a clear distinction between warm and cool phases (see Section 1.4).

2.3.2 Chemistry

One of the most important aspects of the calculations is the tracing the chemical evolution of
the gas. As hydrogen is the most abundant gas in the ISM, the first order chemical processes of
this gas are some of the most important in the ISM. Hydrogen is allowed to dissociate over time
(and to recombine), and to become molecular at higher densities. In order to create molecular
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emission maps we must also include a prescription for creating CO. This process is much more
complex than the other reactions as it is dependent on numerous intermediate species between the
atomic stage and the creation of CO. The ionisation processes alone for the species relevant to
CO formation encompass a staggering amount of di↵erent processes (Glover & Jappsen 2007; De
Becker 2013). If we were to attempt to include only molecular hydrogen and carbon monoxide,
then the data in the UMIST database (McElroy et al. 2013) suggests you would need to encompass
approximately 800 and 400 reactions respectively (assuming that database is complete!). This is
clearly not computationally feasible, especially in the case of a galactic scale simulation where
our time and spatial dimensions far exceed those important chemically. Instead it is prudent to
limit ourselves to only those reactions deemed most important in each case, sacrificing some of
the accuracy for computational simplicity.

The chemical evolution of each species (i.e. the evolution of the number density, nX) is
encompassed by a single ordinary di↵erential equation of the form

dnX

dt
= CX � DXnX , (2.58)

so that the density of species X at the next timestep, t + �t, is

nX(t + �t) = nX(t) +
dnX

dt
�t (2.59)

including a creation coe�cient, CX , and a destruction coe�cient, DX , unique to the species and
often a complex function of density, temperature, and the abundance of other species. For example,
the rate of H2 formation will depend heavily of the abundance of atomic hydrogen. The exact form
of our H I, H2 and CO rate equations are discussed in the following sub-sections. Each particle
in our calculations carries with it a chemistry array of the form ~�a = (�HI, �H2 , �CO)|a, which
is (1, 0, 0) initially. The chemistry arrays keep track of 3 distinct parameters, the H I ionisation
fraction, the H2 ratio and CO abundance which have the values of (0, 0, 0) and (1, 0.5, �CII) in the
low and high density extremes respectively. The electron and proton abundances are also tracked,
but �pr is simply �pr = 1 � �HI and �el = 1 � �HI + �c where �c is the constant free electron
abundance, a result of the ionisation of species other than H I.

The regime of negative abundances should be avoided at all times, i.e. the right hand
side of Equation 2.59 should always be > 0. To ensure this we must include some chemical
timestepping criteria (Glover & Mac Low 2007; Dobbs et al. 2008). This can be calculated from
dtdest = �nX/(CX � DXnX). The sub-stepping time frame is then taken to be 10% of the time
taken to completely destroy the species of interest (dtchem = 0.1dtdest), ensuring negative abun-
dances are avoided. If creation is occurring, then the chemistry is sub-cycled on some fixed scale
(dtchem = dthydro/200). The sub-stepping used to avoid negative abundances is not applied to the H I

chemistry, as the abundance never reaches into this range in our simulations. Some sub-stepping
is still applied however, as the chemistry is at least evolved on the cooling time-scale (Equation
2.41). The CO evolution is done inside of the H2 evolution, as the two are intrinsically linked, and
the CO evolution is also allowed to sub-step further if required.

As the chemistry is evolved as in Equation 2.58 there is expected to be some loss of accuracy
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Figure 2.13: The individual components in the creation and destruction terms for H I (left), H2
(middle) and CO chemistry (right). The density-temperature profile is that used in Figure 2.12
where the rates are calculated at fixed abundances of ~� = (0.94, 1 ⇥ 10�6, 1 ⇥ 10�15).

over large integration time-scales (as opposed to the 2nd order integrations used to evolve the SPH
quantities). However, by evolving the chemistry on the cooling time-scale, as well as including
additional chemistry sub-stepping if required, we hope to minimise this. Any sources of error
involved in the order of integration are also considered to be minimal compared to the simplistic
nature of the chemistry itself.

Three figures will be referenced when referring to the chemical evolution. Figure 2.13
shows the various components contributing to the various creation and destruction rates of each
species and Figure 2.14 shows the resulting evolution tracks for each species. The latter was cre-
ated using a simple 1D code used to test the chemistry, that evolves abundances alone without
various thermodynamical properties, but with a fixed P-T profile representing the general be-
haviour of the ISM cooling function (as in Fig. 2.12). Figure 2.15 is similar to Figure 2.14 but
shows the e↵ect of changing various parameters important for the chemistry of H2 and CO. All
the various chemical reactions are listed in Table 2.3 and the multitude of required parameters are
included in Table 2.4.

HI chemistry

At the most basic chemical level we must include the e↵ect of the ionisation of neutral hydrogen
gas, creating an abundance of H II and free electrons. The various atomic hydrogen processes have
been coded by Glover & Mac Low (2007) and included in our codes (see Table 1 of their paper).
The H I chemistry coe�cients included are

CHI = krecnenp + kgrnpn (2.60)

and
DHI = ⇣CR + kcine (2.61)

where we include the e↵ects of gas-phase recombination, krec, formation on grain surfaces, kgr,
cosmic ray ionisation, ⇣CR and free electron collisional ionisation, kci. The gas-phase recombina-
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tion rate of hydrogen, H II + e� ! H I + �, is that of Ferland et al. (1992) who produce a grid
of temperature based recombination rates and approximate temperature dependent functions. The
exact form is from Glover & Jappsen (2007), given as

krec = 2.753 ⇥ 10�14(315614/T )3/2(1 + (115188/T )0.407)�2.242 (2.62)

which is purely temperature dependent, but the actual recombination rate is a function of ne and
nHII which are heavily density dependent. The gas phase reaction is often an order of magnitude
lower than the grain phase, though will exceed the grain phase in the highest density regions.
The grain phase recombination, H II + e� + grain! H I + grain, is given in Weingartner & Draine
(2001) as;

kgr =
1.22 ⇥ 10�13

1 + 8.074 ⇥ 10�6 1.378(1 + 508.7T 0.01586 �0.4723�1.102⇥10�5 ln T )
(2.63)

with the e↵ect of grain charging is characterised by  parameter, given by  = Gdust
p

T/ne. The
ionisation of H I comes from a combination of cosmic ray ionisation and ionisation by collisions
with free electrons, H I + e� ! H II + 2e�, from Abel et al. (1997) at a rate

kci = exp

0
BBBBBB@

8X

i=1

ci(ln T )i

1
CCCCCCA (2.64)

where the ci parameters were fit to experimental data. This rate decays extremely fast with in-
creasing density (and decreasing temperature), as seen in Fig. 2.13, and so will only add to ad-
ditional ionisation already caused by cosmic rays. The evolution track of H I ionisation is shown
in Fig. 2.14 (left panels). The figure shows that the ionisation is of little importance in the cold
phase of the ISM (n > cm�3) and has a near linear dependance on density in the warm phase. The
maximum ionisation fractions seen in our calculations are approximately 15%. While seemingly
low, it is not surprising considering we are not e↵ectively modelling the hot ISM component.

An important note is that we are talking about the hydrogen ionisation fraction above. The
actual abundance of atomic hydrogen is the amount of unionised hydrogen that is not locked in
molecular form, �HI(1 � �H2).

H2 chemistry

The chemistry of H2 used here is taken from Bergin et al. (2004) and Draine & Bertoldi (1996)
based on the work of Hollenbach et al. (1971), and used by Glover & Mac Low (2007) and Dobbs
et al. (2008). The creation and destruction terms are given by

CH2 = Rgr(T )ntotnHI (2.65)

and
DH2 = ⇣CR + ⇣H2(NH2 ,Ntot). (2.66)
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Figure 2.14: Chemical evolution for a simple 1D code with a fixed P-T profile (Figure 2.12).
Moelcular processes are a strong function of total gas density, with abundances displaying a sharp
increase in the region of thermal instability of the ISM phase diagram. The ionisation fraction of
H I also scales with density, reaching a maximum ionisation fraction of 15% in our calculations.
The high density limits for the H I, H2 and CO abundances of 1, 0.5 and �CII are shown as dashed
lines.

where H2 is formed on grain surfaces and is destroyed by photo-dissociation and cosmic rays. The
formation of H2 on grain surfaces occurs at a rate of

Rgr(T ) = Rgr(T�)S
p

T cm3s�1K�0.5, (2.67)

where Rgr(T�) = 2.2 ⇥ 10�18cm3s�1 and the grain formation e�ciency is S ⇡ 0.3. The e�ciency
factor should be a function of gas and grain temperatures, but we use a fixed value for simplicity
(Dobbs et al. 2008). The destruction of H2 is a result of cosmic ray photo-ionisation, ⇣CR, and
a local photo-destruction term, ⇣H2, which is a function of the column density and the visual
extinction, Av. The term takes the form as given in Draine & Bertoldi (1996)

⇣H2(NH2 ,Ntot, Av) = fshield(NH2) fdust(Ntot)⇣H2(0) (2.68)

where the constant raw/unshielded photo-dissociation rate is ⇣H2(0) (with a UV field strength of
G� built in). The additional terms are the dust shielding/attenuation, fdust and the self-shielding,
fshield (i.e. shielding by absorption of other H2 molecules). The dust shielding factor is similar to
that used in the cooling, specifically given by

fdust = e�⌧d,1000 (2.69)
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Figure 2.15: Similar evolution tracks as Figure 2.14 but showing the e↵ect of di↵erent values of
ACF

V , lph, Rgr(T�) and C II on the formation of H2 and CO.

where the optical depth for shielding is taken at 1000Å. This is given by the ⌧d,1000 = �H2 AV where
the visual extinction can be calculated from the column density of the gas and �H2 = 3.74 (Glover
et al. 2010) for the di↵use ISM where RV ⇡ 3.1, but could grow much greater in the dense, RV ⇡ 5,
ISM. The self shielding factor is given by

fshield =
0.965

(1 + x/b5)2 +
0.035p

1 + x
exp

h
�8.5 ⇥ 10�4

p
1 + x

i
(2.70)

where x = NH2/5 ⇥ 1014 cm�2 and b5 is the Doppler broadening width of the line absorption in
units of 105cms�1, where we adopt 3km s�1 (Lee et al. 1996), and approximate column densities
by NX = nXl.

The cosmic ray rate is only significant in regions of high column density gas where H2 is
well shielded against the surrounding UV field (middle, Fig. 2.13). The grain formation rate is
predominantly a linear function of density, with the

p
T dependance only having a marginal e↵ect.

The majority of parameters included in the above equations do not have a very strong e↵ect on
the global H2 production, illustrated by Figure 2.15. The impact of varying lph and ACF

V is only
noticeable in the mid-density regime. Changes in the extinction conversion factor, ACF

V , need to
be of around two orders of magnitude to see a noticeable di↵erence H2 production. Fortunately
the parameter with the greatest uncertainty, the distance for column density calculations, shows
to only impact the density range of 1cm�3 < n < 10cm�3. Even then the change is only minor
considering the distance is changed from 3.2-100pc.

CO chemistry

The chemistry underlying the production of CO is somewhat more complicated than that of H2

due to the wealth of intermediate species between the atomic and final molecular stage of CO.
Previous studies rarely attempt to model all the species involved in CO formation/destruction due
to the cripplingly slow speed it which it would take to evolve all these species, and their ions.
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Instead works in the literature focus on what they deem to be the most important rates for the
problem at hand. In Glover et al. (2010) the authors compare some of these di↵erent approaches
including (ordered by complexity) Glover et al. (2010), Keto & Caselli (2008), Nelson & Langer
(1999) and Nelson & Langer (1997), ranging from modelling 218 to 4 reactions. The authors find
that more reactants doesn’t necessarily imply better accuracy, and that if the primary concern is
the distribution of galactic CO then even the simplest model does a good job compared to the those
with much greater complexity. In light of this we utilise the simple model of Nelson & Langer
(1997)10. In this model C II is converted to CO through the production of some intermediate
hydrocarbon step, denoted CHX, resulting from an initial reaction of C II with H2 (at a rate k0).
An intermediate stage of the neutralisation of CH+2 to CHX (encompassing CH2 and CH) is not
modelled, and is assumed to occur on timescales much smaller than anything else in the CO
formation process. The CO and CHX are subjected to photodestruction which is several orders of
magnitude stronger than cosmic ray ionisation in most regions. The creation and destruction rates
of CO are

CCO = k0nH2nCII� (2.71)

and
DCO = ⇣CO(Ntot), (2.72)

where � quantifies the e�ciency of the reaction CHX + O I ! CO + HX (at a rate k1) over the
photodestruction of CHX. This is represented by

� =
k1nOI

k1nOI + ⇣CHX(Ntot)
. (2.73)

The abundances of O I and C II are needed to quantify the production of CO, however as we
have already mentioned these are not species we follow in our calculations. We make the basic
assumption that O I and C II are either in their original forms or locked into CO, i.e. nCII(t) =
nCII(0) � nCO(t) and nOI(t) = nOI(0) � nCO(t). The two separate photo-destruction rates are given
by

⇣CHX(Ntot) = Gdust ⇣CHX(0) (2.74)

and
⇣CO(Ntot) = Gdust ⇣CO(0) (2.75)

where ⇣CHX(0) = 5⇥10�10s�1 and ⇣CO(0) = 1⇥10�10s�1 and the UV field coupled to the dust atten-
uation is similar to previous sections, Gdust = G� fdust = G�e�⌧UV . The visual extinction is grouped
together for both processes and calculated using the total column density as ⌧UV = �CO,CHX AV

where �CO,CHX = 2.5 (Nelson & Langer 1997). There have been a few simplifications in this
model, not including the simplification of a limited number of tracked species and reactions. No
self-shielding of CO, or shielding by H2 is included ( fH2 , fCO), which will inhibit the destruction
of CO in high density regions. Tabulated forms of these shielding factors are given by (Lee et al.

10We actually use the formulation from Glover & Clark (2012) as it appears there are a couple of minor typos in
the equations of Nelson & Langer (1997) that allow CO formation in the complete absence of H2. Though this change
made only very minor di↵erence to the CO abundance, and only at the highest densities.
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1996), but we maintain standard form from Nelson & Langer (1997) as above. We also do not
include cosmic ray ionisation in the CO chemistry as the photodissociation rate is many orders
of magnitude greater. Even when using 1000 times our fiducial value of ⇣CR there was no visible
e↵ect on the evolution track of CO in shown in Fig. 2.15. There is also the assumption that the
dust shielding factors (�X) are the same for all reactions in the CO chemistry. In the substantially
more complicated chemical network of Nelson & Langer (1999) the authors use separate factors
of �CO = 3 and �CHX = 1.5. Individual coe�cients for the CHX components are given in Glover
et al. (2010) as �CH =1.2-2.8 and �CH2 =1.7-2.3 depending on whether the reaction is dissociative
(former) or ionising (later), though the incorporation of these would require a much more sophis-
ticated network. This additional shielding is of little importance in the simulations shown here,
as once present in the coldest regions it is very stable, there is no e�cient heating mechanism to
break it apart once there. Thus any additional shielding to the photo-dissociation is not needed, as
the CO is already saturated. If we were to include additional feedback mechanisms then additional
shielding may be required.

The behaviour of CO with varying ACF
V or lph is similar to H2 in Figure 2.15. The broad

evolution is insensitive to small variations in either parameter. However, with either lph as low
as 3.2pc or an extinction factor two orders of magnitude lower than fiducial value then C II is no
longer fully saturated into CO in the range of densities modelled in our calculations.

Reaction Description Reference
H II + e� + grain! H I + grain Grain surface formation Weingartner & Draine (2001)
H II + e� ! H I + � Gas-phase recombination Ferland et al. (1992)
H I + e� ! H II + 2e� e� collisional ionisation Abel et al. (1997)
H I + c.r.! +H II + e� Cosmic ray ionisation Glover & Mac Low (2007)
H I + H I + grain! H2 + grain Grain surface formation Bergin et al. (2004)
H2 + � ! 2H I UV photodissociation Draine & Bertoldi (1996)
H2 + c.r.! H+2 + e� Cosmic ray ionisation Bergin et al. (2004)
C II + H2 ! CH+2 + � Radiative association Nelson & Langer (1997)
CH+2 + various! CHX + various Rapid neutralisation⇤ -
CHX + O I! CO + HX Gas phase formation -
CHX + � ! C + HX UV photodissociation -
CO + � ! C I + O I UV photodissociation† -

Table 2.3: Processes present in our chemical model focussed on tracing the evolution of H I, H2
and CO with their relevant references.
⇤ Process is intermediate and is assumed rather than fully represented.
† C I is not present in our chemistry, but is assumed to very rapidly photoionise to C II.
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Term Description Value
lcool Distance measurement for cooling 10 pc
lHI Distance measurement H I chemistry 100 pc
lph Distance measurement for H2 and CO chemistry (B star) 35 pc

Rgr(To) H2 grain formation rate at To = 100K 6 ⇥ 10�18cm3s�1

k0 CHX intermediate species formation rate from C II 5 ⇥ 10�16 cm3s�1

k1 CO formation rate from O I + CHX 5 ⇥ 10�10 cm3s�1

⇣H2(0) Unshielded H2 photodissociation rate 4.17 ⇥ 10�11 s�1

⇣CHX(0) Unshielded CHX photodissociation rate 5.00 ⇥ 10�10 s�1

⇣CO(0) Unshielded CO photodissociation rate 1.00 ⇥ 10�10 s�1

⇣CR Cosmic ray ionisation rate 1.00 ⇥ 10�17 s�1

�H2 Dust shielding factor of H2 photodissociation 3.74
�CO,CHX Dust shielding factor of CO & CHX photodissociation 2.50

b5 Doppler broadening factor for H2 3 km s�1

Tdust Dust temperature for heating/cooling 10 K
ACF

V Visual extinction conversion factor (AV/Ntot) 5.348 ⇥ 10�22 cm�2

Go Strength of the UV radiation field in Habing units 1.56
�He He abundance 1.0 ⇥ 10�1

�el free e� abundance 2.0 ⇥ 10�4

�CII CII abundance 2.0 ⇥ 10�4

�SiII SiII abundance 3.0 ⇥ 10�5

�OI OI abundance 4.5 ⇥ 10�4

�CI CI abundance 0.0
�SiI SiI abundance 0.0

Table 2.4: Various parameters and their adopted values for the various chemistry and cooling
routines used in this thesis, unless otherwise specified.
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2.4 Chapter summary

In this chapter the we have outlined the main computational details of our calculations presented
in the remainder of this thesis. In Section 2.2 we discussed the primary workhorse of our investi-
gation, smoothed particle hydrodynamics, used to simulate the evolution of the ISM on a galactic
scale. The SPH density formulation was constructed, and momentum and energy rate equations
we derived. These including the e↵ect of hydrodynamical and artificially dissipative forces, taking
the general forms

Dv/Dt = fhydro + fAV + fext, (2.76)

DU/Dt = U̇hydro + U̇AV + U̇AC + U̇IS M (2.77)

where fext will be discussed further Chapters 3 and 5. In the former case this is due to purely
analytical, smooth potentials, while in the later this is a combination of analytical potentials and
the evolution of an N-body stellar component. The importance of artificial dissipation was also
discussed ( fAV , U̇AV , U̇AC), required to correctly capture shocks in the converging flows and con-
tact discontinuities, illustrated with a few well known test cases. The two SPH codes utilised in
this work were briefly discussed, and a few test calculations were presented to illustrate correct
behaviour of the codes in a galactic context.

Section 2.3 presents the main adaptations to required to track the molecular content of the
ISM. The thermal profile is reproduced by the inclusion of the U̇IS M term. This includes the var-
ious heating and cooling mechanisms of importance to galactic scales, and is discussed briefly in
Section 2.3.1. A simple chemical network is also included that allows the tracing of the abun-
dances of H I, H2 and most importantly CO. The chemical processes are outlined in Section 2.3.2
including the e↵ects of grain formation, gas phase formation, cosmic ray ionisation and photo-
destruction. While seemingly rudimentary, the chemistry includes the basic processes required to
track the global distribution of molecular gas. If smaller scale structures such as individual clouds
were the subject of investigation then the chemical network, and possibly cooling processes, would
need to be substantially more complex.

To actually construct our synthetic observations we must use another numerical technique
to calculate the emission from the ISM gas. A brief discussion of the theory of radiative transfer,
and the torus code used is included in Chapter 4.


